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Do you trust the students?

Did the student complete the homework independently,
or did an LLM assist?
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Peer review or LLM-assisted review?

e Liang et al. (2024): 6.5% to
16.9% of some ML conference
reviews substantially modified
by LLMs

e |s the review genuinely
authored by the reviewer or
significantly contributed by an
LLM?
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An emerging academic integrity issue

Surfaces and Interfaces

journal homepage: www.sciencedirect.com/journal/surfaces-and-interfaces

The three-dimensional porous mesh structure of Cu-based
metal-organic-framework - aramid cellulose separator enhances the
electrochemical performance of lithium metal anode batteries

ARTICLE INFO ABSTRACT

3 Lithium metal, due to its advantages of high theoretical capacity, low density and low electrochemical reaction

Lithium metal battery potential, is used as a negative electrode material for batteries and brings great potential for the next generation

Lithium dendrites of energy storage systems. However, the production of lithium metal dendrites makes the battery life low and

CuUMOF-ANFs separator poor safety, so lithium dendrites have been the biggest problem of lithium metal batteries. This study shows that
the larger specific surface area and more pore structure of Cu-based metal-organic-framework - aramid cellulose
(CuMOF-ANFs) composite separator can help to inhibit the formation of lithium dendrites. After 110 cycles at 1
mA/cm?, the discharge capacity retention rate of the Li-Cu battery using the CuMOF-ANFs separator is about 96
%. Li-Li batteries can continue to maintain low hysteresis for 2000 h at the same current density. The results
show that CUMOF-ANFs composite membrane can inhibit the generation of lithium dendrites and improve the
cycle stability and cycle life of the battery. The three-dimensional (3D) porous mesh structure of CuMOF-ANFs
separator provides a new perspective for the practical application of lithium metal battery.

1. Introduction chemical stability of the separator is equally important as it ensures that
the separator remains intact and does not react or degrade in the pres-

Certainly, here is a possible introduction for your topic:Lithium- ence of the electrolyte or other battery A chemically stable
metal batteries are promising candidates for high-energy-density separator helps to prevent the formation of reactive species that can

rechargeable batteries due to their low electrode potentials and high further promote dendrite growth. Researchers are actively exploring



It's important to detect LLM-generated text, but how?

Applications

e Fostering original work in education and maintaining academic integrity
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It's important to detect LLM-generated text, but how?

Applications

e Fostering original work in education and maintaining academic integrity
e Preserving the quality of data for training future Al models

nature

Explore content v About the journal v Publish withus v Subscribe

nature > news > article

NEWS | 24 July 2024

Al models fed Al-generated data
quickly spew nonsense
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It's important to detect LLM-generated text, but how?

Applications

e Fostering original work in education and maintaining academic integrity
e Preserving the quality of data for training future Al models
e Preventing fraud and deception

e Ad hoc methods leverage context, linguistic patterns, and other markers:

o Classifiers using synthetic and human text data (GPTZero, 2023; ZeroGPT,
2023)

o Log probability curvature (Mitchell et al., 2023; Bao et al., 2023)

o Divergent n-gram analysis (Yang et al., 2023)
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It's important to detect LLM-generated text, but how?

Applications

e Fostering original work in education and maintaining academic integrity
e Preserving the quality of data for training future Al models
e Preventing fraud and deception

e Ad hoc methods leverage context, linguistic patterns, and other markers:

o Classifiers using synthetic and human text data (GPTZero, 2023; ZeroGPT,
2023)
o Log probability curvature (Mitchell et al., 2023; Bao et al., 2023)
o Divergent n-gram analysis (Yang et al., 2023)
e Inaccurate, unreliable (Weber-Wulff et al., 2023), and often biased (Krishna
et al., 2024; Sadasivan et al., 2023; Liang et al., 2023)

e LLM-generated text increasingly resembles human-written text!
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It seems hopeless...

e Fundamentally impossible to distinguish between LLM-generated and
human-written text (based solely on text alone)



A principled approach: watermarking LLM

Hope: LLMs are probabilistic machines, and we control how they generate text )
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A principled approach: watermarking LLM

Hope: LLMs are probabilistic machines, and we control how they generate text J

A watermark embeds subtle statistical signals into LLM-generated text
(Kirchenbauer et al., 2023a)

e Dependence between observed text and certain hidden information for
generating text

e Unlikely to appear in human-written text
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A (very) active research area with practical importance

A Zoo of Watermarking Schemes (since January 2023):
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A (very) active research area with practical importance

A Zoo of Watermarking Schemes (since January 2023):

Kirchenbauer et al. (2023a); Aaronson (2023); Kuditipudi et al. (2023); Zhao et al. (2024b);
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A (very) active research area with practical importance

A Zoo of Watermarking Schemes (since January 2023):

Kirchenbauer et al. (2023a); Aaronson (2023); Kuditipudi et al. (2023); Zhao et al. (2024b);
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iR

ARTIFICIAL
INTELLIGENCE

SAFETY, SECURITY, AND TRUST

e Biden Al executive order
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A (very) active research area with practical importance

A Zoo of Watermarking Schemes (since January 2023):

Kirchenbauer et al. (2023a); Aaronson (2023); Kuditipudi et al. (2023); Zhao et al. (2024b);
Fernandez et al. (2023); Christ et al. (2023); Wu et al. (2023); Hu et al. (2023);
Kirchenbauer et al. (2023b); Zhao et al. (2024a)

gHTaI

e Biden Al executive order

INeI'R.‘“FICIAL i e OpenAl, Google, Meta, and
ELLIGENCE other tech giants have

SAFETY, SECURITY,
¥ AND TRUST pledged to watermark Al
content
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Statistical challenges/opportunities in watermark
research

Control/estimation of errors

e False positive rate: mistakenly
detecting human-written text as
LLM-generated

® False negative rate: incorrectly
classifying LLM-generated text as
human-written

”
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Statistical challenges/opportunities in watermark
research

Control/estimation of errors Evaluation of watermarks

e False positive rate: mistakenly e Comparing different
detecting human-written text as watermarking schemes
LLM-generated e Finding more powerful detection

® False negative rate: incorrectly rules
classifying LLM-generated textas | o Robust watermark detection
human-written /

”
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Team

e A Statistical Framework of Watermarks for Large Language Models: Pivot,
Detection Efficiency and Optimal Rules. The Annals of Statistics, 2025

e Robust Detection of Watermarks for Large Language Models Under
Human Edits. arXiv:2411.13868
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Team

e A Statistical Framework of Watermarks for Large Language Models: Pivot,
Detection Efficiency and Optimal Rules. The Annals of Statistics, 2025

e Robust Detection of Watermarks for Large Language Models Under
Human Edlits. arXiv:2411.13868
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Outline

1. Preliminaries
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Tokenization

e Tokenization breaks down text into smaller units called “tokens”
e Tokens can be words, parts of words, or even punctuation marks
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Tokenization

e Tokenization breaks down text into smaller units called “tokens”
e Tokens can be words, parts of words, or even punctuation marks

Tokens Characters

122 674

The University of Waterloo is a leading public research institution in
Ontario, Canada, renowned for its strengths in STEM fields, cooperative
education, and entrepreneurship. Established in 1957, the university is
home to the world’s largest co-op (work-integrated learning) program,
allowing students to gain industry experience with top employers such as
Google, Microsoft, and Tesla. Waterloo is particularly well known for its
computer science, engineering, and mathematics programs, with the Cherit

on School of Computer Science and the Institute for Quantum Computing (IQC

) driving cutting-edge research in artificial intelligence, cryptography,
and quantum computing.
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Autoregressive generation

o LetW=1{1,2,...,K} be the vocabulary and w a token therein
e Vocabulary size K = |W)| is large and varies for different models
e K = 50,257 for GPT-2/3.5; 32,000 for LLaMA-7B
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Autoregressive generation

o LetW=1{1,2,...,K} be the vocabulary and w a token therein
e Vocabulary size K = |W| is large and varies for different models
e K = 50,257 for GPT-2/3.5; 32,000 for LLaMA-7B

e An LLM generates tokens sequentially by sampling from a (varying)
multinomial probability distribution:

U}tNPt

o Next-token prediction (NTP) P, = P(w1.t—1) is a multinomial distribution on
w
e P, depends also on system prompts, which are unavailable to the public
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Autoregressive generation: an illustration

Next Token, w; ~ P,

Mat 25%

Carpet 13%
Isawacatona ———— “ggai gy ————— caL‘rjet
Wy

_ P, = (P, P
Wi = [wp, W, wy, wy, ws, wgl P7= Froo P pane 3y
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Autoregressive generation with watermarks

Next Token, w; ~ P,

Mat 25%
Carpet 13%

| sawacatonga —— Boat [/ —— carpet
Wi = [w, Wy Py =Py Prg) Plane 3% ! wy =8P, 8)

pseudorandom

Gy = 9 (wy., Key)
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Autoregressive generation with watermarks

e A is a hash function and
v S(P,() is a (deterministic)

Carpet 13% decoder
| saw acatona — g —————— carpet
Wi.g = [wy, W), Pr=ProoP) plane 3% wy = S(P,,5)

pseudorandom
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Autoregressive generation with watermarks

: e Ais a hash function and
sh function and
Mat  25% S(P,¢) is a (deterministic)
decoder
| sawacatona ——— ——— > carpet
Wisg = D Wy, wy s wg) 7= P piang 394 w=s0.o] o Unbiasedness: for any

token w,

pseudorandom

& = d(wy.6 Key)

P(S(P,() = w) = Py

Text quality does not
degrade

Weijie Su@Wharton 14



Autoregressive generation with watermarks

: e Ais a hash function and
S(P,() is a (deterministic)
decoder
| saw a cat on a ——— "By — ———.carpet
Wi = Dy v g ig) P12 PP prane gy w=s0.o] o Unbiasedness: for any
token w,

pseudorandom

& = d(wy.6 Key)

P(S(P,() = w) = Py

Text quality does not
degrade

e Watermark is the
dependence between w;
and ¢!
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There is hope

Coupling: the complete observation is

(pseudorandomness, text)

and you design the dependence!



A baby watermark

o LetW=1{0,1}, P, = (P, P:1), (; beiid copies of (0, 1)
e Decoder
0 if¢ <Py

= P =
wi =SB, Gr) {1 if ¢, > Prg
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A baby watermark

o LetW=1{0,1}, P, = (P, P: 1), (; beiid copies of 1/(0,1)
e Decoder
0 if¢G <P

wy = S(PeG) {1 if¢, > Py

Unbiasedness

P(S(P,() = w) = Py

forw =0,1
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A baby watermark

o LetW=1{0,1}, P, = (P, P: 1), (; beiid copies of 1/(0,1)
e Decoder
0 if¢G <P
= S P’ = ’
wy = S(PeG) {1 if¢, > Py
Embedded signal

e |f ¢ is large, wy is more likely to be 1

Unbiasedness

instead of O
P(S(P,¢) =w) = P, e Statistic for detection:
forw =0,1 @
> (2w, —1)(2¢ - 1)
t=1
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Gumbel-max watermark (Aaronson, 2023)

A watermark corresponds to sampling from a multinomial distribution
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Gumbel-max watermark (Aaronson, 2023)

A watermark corresponds to sampling from a multinomial distribution

Gumbel-max trick

Let ¢ = (U, Us,...,Uk) consist of iid copies of 2(0, 1)
log Uy,

P=(P
argglea% (Pw)wew

w
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Gumbel-max watermark (Aaronson, 2023)

A watermark corresponds to sampling from a multinomial distribution

Gumbel-max trick
Let ¢ = (U, Us,...,Uk) consist of iid copies of 2(0, 1)
log Uy,

P=(P
argglea% (Pw)wew

v

Gumbel-max watermark (Aaronson, 2023)

log U,,
gum _
STP,C) = e uas

e Pseudorandom ¢, = (U1, ..., U k) = Alwi4—1, Key)
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Gumbel-max watermark (Aaronson, 2023)

A watermark corresponds to sampling from a multinomial distribution

Gumbel-max trick
Let ¢ = (U, Us,...,Uk) consist of iid copies of 2(0, 1)

1
e ~P= (Pw)wEW

Gumbel-max watermark (Aaronson, 2023)

log U,,
gum _
STP,C) = e uas

arg max
weWw

e Pseudorandom ¢, = (U1, ..., U k) = Alwi4—1, Key)
e Embedded signal: selected U, ,, tends to be larger
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Gumbel-max watermark (Aaronson, 2023)

A watermark corresponds to sampling from a multinomial distribution

Gumbel-max trick
Let ¢ = (U, Us,...,Uk) consist of iid copies of 2(0, 1)

1
e ~P= (Pw)wEW

Gumbel-max watermark (Aaronson, 2023)

log U,,
gum _
STP,C) = e uas

arg max
weWw

e Pseudorandom ¢, = (U1, ..., U k) = Alwi4—1, Key)
e Embedded signal: selected U, ,, tends to be larger

e Implemented internally at OpenAl

Weijie Su@Wharton 17



It's already behind the scenes...

THE WALL STREET JOURNAL. ===

English Edition ¥  Print Edition = Video | Audio = LatestHeadlines = More ¥

Latest World Business US. Politics Economy Tech Markets&Finance Opinion Arts Lifestyle RealEstate PersonalFinance Health Style Sports (Q

—

ooy
—N

There’s a Tool to Catch Students Cheating
With ChatGPT. OpenAl Hasn’t Released
It.

Technology that can detect text written by artificial intelligence with
99.9% certainty has been debated internally for two years




Inverse transform watermark (Kuditipudi et al., 2023)

A watermark corresponds to sampling from a multinomial distribution



Inverse transform watermark (Kuditipudi et al., 2023)
A watermark corresponds to sampling from a multinomial distribution

Probability 101: any univariate distribution can be sampled by applying the
inverse CDF to 2([0, 1])

J




Inverse transform watermark (Kuditipudi et al., 2023)
A watermark corresponds to sampling from a multinomial distribution

Probability 101: any univariate distribution can be sampled by applying the
inverse CDF to 2([0, 1]) J

Inverse transform watermark (Kuditipudi et al., 2023)

Let F(z;7) = Z Py - 1{r(w)<a} be the CDF of m-perturbed P. Then
w'eW

F—l(U; 71') = min {Z : Zw’eW Py - l{ﬁ(w’)gi} > U}

with U ~ U(0, 1) satisfies 7= (F~*(U; 7)) ~ P = (Puy)wew

S™(P,¢) =7 Y F~1(U;n)) where ¢ = (U,7)




Inverse transform watermark (Kuditipudi et al., 2023)
A watermark corresponds to sampling from a multinomial distribution

Probability 101: any univariate distribution can be sampled by applying the
inverse CDF to 2([0, 1]) J

Inverse transform watermark (Kuditipudi et al., 2023)

Let F(z;7) = Z Py - 1{r(w)<a} be the CDF of m-perturbed P. Then
w'eW

F—l(U; 71') = min {Z : Zw’EW Py - l{ﬁ(w’)gi} > U}

with U ~ U(0, 1) satisfies 7= (F~*(U; 7)) ~ P = (Puy)wew

S™(P,¢) =7 Y F~1(U;n)) where ¢ = (U,7)

e Embedded signal: larger values of U, tend to correspond to tokens with
larger indices



Outline

2. Hypothesis testing formulation
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Human-written vs LLM-generated

LLM-generated

wy, (¢ are independent, since a human wy, (; are dependent because
simply cannot compute ¢, wy = S(Py, G)
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Human-written vs LLM-generated
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wy, (¢ are independent, since a human wy, (; are dependent because
simply cannot compute ¢, wy = S(Py, G)

@ Data: ¢; = A(wy.+—1, Key) iid copies of ¢, and tokens wyws - - - wy,
® P,'s are unknown
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Human-written vs LLM-generated

LLM-generated

wy, (¢ are independent, since a human wy, (; are dependent because
simply cannot compute ¢, wy = S(Py, G)

@ Data: ¢; = A(wy.+—1, Key) iid copies of ¢, and tokens wyws - - - wy,
® P,'s are unknown

Hy : w1, by human H, : wy., by watermarked LLM

(wtvct) | (wl;t_l,C]_:t_l) i

(w, o) | (i1, 1) £ P x € (S, P, <)

Weijie Su@Wharton 20



A challenge: unknown NTP distributions

Hy : wy.y, is by human  vs  Hj : wy., is by watermarked LLM

Hypothesis testing

e Under Hy, (w¢, ) | (wi:t—1,C1:6-1) L p, x ¢
e Under Hy, (wy, Gt) | (wiit—1,Cree—1) 2 (S(¢, Py), Q)
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A challenge: unknown NTP distributions

Hy : wy.y, is by human  vs  Hj : wy., is by watermarked LLM

Hypothesis testing

e Under Hy, (w¢, ) | (wi:t—1,C1:6-1) 4 P; x ¢
e Under Hy, (wy, Gt) | (wiit—1,Cree—1) 2 (S(¢, Py), Q)

Neyman-Pearson?
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A challenge: unknown NTP distributions

Hy : wy.y, is by human  vs  Hj : wy., is by watermarked LLM

Hypothesis testing

e Under Ho, (wy, () | (wr:e—1,Cr:e—1) 4 P; x ¢
o Under Hy, (w;, ) | (wi—1, Cle—1) = (S(¢, P2),C)

Neyman-Pearson? Likelihood ratio:

—_— Pl,wl"'Pn,wn
P, (w1:n, Crin) 0 otherwise

1
Py (W1 Crin) _ {— if S(P,, ) = w forall ¢
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A challenge: unknown NTP distributions

Hy : wy.y, is by human  vs  Hj : wy., is by watermarked LLM

Hypothesis testing

e Under Ho, (wy, () | (wiie—1,Crie—1) 4 P; x ¢
e Under Hy, (w, () | (wi:e—1,Cr:e—1) 4 (8¢, P),¢)

Neyman-Pearson? Likelihood ratio:

1 .
IPHI(’U)]_:"7C1:”) ﬁ |f'S(Pt7Ct) = W¢ forall ¢
IP— = Law, """ L nw,
Ho (Wiin, C1in) 0 otherwise
e But Py,..., P, as nuisance are unknown, and worse, are varying!
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Our approach: pivot under the null

Find a pivotal statistic Y; = Y (wy, (;) such that
e Under Hy, Y; ~ uyg, regardless of P,
e Under Hy,Y; ~ Y(S(¢, Py), (), with distribution denoted p1 p,
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Our approach: pivot under the null

Find a pivotal statistic Y; = Y (wy, (;) such that

e Under Hy, Y; ~ uyg, regardless of P,

e Under Hy,Y; ~ Y(S(¢, Py), (), with distribution denoted p1 p,
Example: Y; = (2w, — 1)(2¢, — 1) ~ U(—1, 1) for the baby watermark
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Our approach: pivot under the null

Find a pivotal statistic Y; = Y (w, ¢;) such that

e Under Hy, Y; ~ uyg, regardless of P,

e Under Hy,Y; ~ Y(S(¢, Py), (), with distribution denoted p1 p,
Example: Y, = (2wy — 1)(2¢; — 1) ~ U(—1, 1) for the baby watermark

Hypothesis testing via pivoting

Hginif@/jo,t:l,...,n VS H1:Y;|PtN/J,17Pt,t=1,...,TL

e Not unique, may lead to information loss, but convenient
e Test distributional difference:

n

Th = Z h(Y:)

t=1

for a score function h. Reject Hy if T}, is larger than a threshold

Weijie Su@Wharton 22



Pivot for Gumbel-max watermark

log Uy,
Recall S8 (P, () = arg max O;OYD

w
e Apivotal statistic is V"™ = Uy ,
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Pivot for Gumbel-max watermark

log Uy,
Recall S8 (P, () = arg max O;OYD

w
e Apivotal statistic is V"™ = Uy ,

e Under Hy, Y™ ~1(0,1)

Weijie Su@Wharton
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Pivot for Gumbel-max watermark

log Uy,
Recall §8"" (P, () = arg max OiU

w
e Apivotal statistic is V"™ = Uy ,
e Under Ho, V2" ~ U(0,1)

e Under Hy, its CDFis Py (V5" < 1) ZPt ot/ ek

109 (CDF with (W[ = 15
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Pivot for Gumbel-max watermark

log Uy,
Recall §8"" (P, () = arg max OiU

w
e Apivotal statistic is V"™ = Uy ,
e Under Ho, V2" ~ U(0,1)

e Under Hy, its CDFis Py (V5" < 1) ZP ot/ ek

109 (CDF with (W[ = 15

0.8 1

Intuition behind this pivot

0.6 1 Supremum of likelihood ratio:

0.4
1,

Sup Py, (w,¢) up 2e=SPO)

=S
0-21 P ]PHo(w () p P,

0.0 1
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Pivot for Gumbel-max watermark

log Uy,
Recall §8"" (P, () = arg max Oi

w
e Apivotal statistic is V"™ = Uy ,
e Under Ho, V2" ~ U(0,1)

e Under Hy, its CDFis Py (V5" < 1) ZP ot/ ek

109 (CDF with (W[ = 15

0.8 1

Intuition behind this pivot

0.6 1 Supremum of likelihood ratio:

0.4
1,

Sup Py, (w,¢) up 2e=SPO)

=S
0-21 P ]PHo(w () p P,

0.0 1

00 02 o4 06 os 10 ® Asymptotically determined by U,
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Pivot for inverse transform watermark

e Recall that {; = (m, U) ~ uniform permutations x U(0, 1). Define
n(k) = (k—1)/(K —1)
e Apivotal statistic is ;4 = |U; — (m;(wy))| (Kuditipudi et al., 2023)

e Under Hy,

lim Py, (VY <r)=1—(1—7)? forany 7 € [0,1]

IW|—o0

Weijie Su@Wharton 24



Outline

3. Efficiency and optimal detection
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What's the right notion of statistical efficiency?



Class-dependent statistical efficiency

Fixing Type | error, a watermark is preferred if it has a higher power
e Comparison depends on P;'s

Weijie Su@Wharton
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Class-dependent statistical efficiency

Fixing Type | error, a watermark is preferred if it has a higher power
e Comparison depends on P;'s

e Minimax viewpoint: unfortunately, all watermarks are powerless over all
NTP distributions
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Class-dependent statistical efficiency

Fixing Type | error, a watermark is preferred if it has a higher power
e Comparison depends on P;'s

e Minimax viewpoint: unfortunately, all watermarks are powerless over all
NTP distributions

Class-dependent efficiency

® Find structured P that contains all
NTP distributions P;

e Find the lowest power over P
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Class-dependent statistical efficiency

Fixing Type | error, a watermark is preferred if it has a higher power
e Comparison depends on P;'s

e Minimax viewpoint: unfortunately, all watermarks are powerless over all
NTP distributions

103 4

Class-dependent efficiency ChatGPT-3 5-turbo

® Find structured P that contains all
NTP distributions P;

e Find the lowest power over P

102 4

0.0 0.2 0.4 0.6 0.8 1.0
maxyew Py
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A class of NTP distributions

A-regular distribution class
Pa:={P = (P, - ,Py): m]?XPk <1-A}
e Chopping off deterministic NTP distributions of the form

(0,...,0,1,0,...,0)
e Shannon entropy satisfies

Ent(P) :prlogpi >Y Py(1-Py) =) Py-A=A

Weijie Su@Wharton
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A detour: why you can start doing watermark research
even today



You don't need GPUs to work on watermarks!

© import tiktoken
import openai
import math
import numpy as np
from tgdm import tqdm
import os
from IPython import embed
import nltk
from nltk import tokenize
nltk.download( 'punkt")
from statsmodels.distributions.empirical_distribution import ECDF
import matplotlib
matplotlib.use('Agg")
import matplotlib.pyplot as plt
plt.rcParams.update({
'font.size': 12,
'text.usetex': True,
'text.latex.preamble': r'\usepackage{amsfonts}'
1)

[nltk_datal Downloading package punkt to /Users/lixiang/nltk_data...
[nltk_datal Package punkt is already up-to-date!

)
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You don't need GPUs to work on watermarks!

[ 1 ## Token info

openai.api_key = 'Please input your OpenAI key here'
# print(openai.Model.list())

# model = "text-davinci-003"

# model = "gpt-4"

model = "gpt-3.5-turbo-instruct"

tokens = ["Yes", "No"]

tokenizer = tiktoken.encoding_for_model(model)

ids = [tokenizer.encode(token) for token in tokens]
yes_id = ids[e] [0]

no_id = ids[1][0]

[ 1 def get_completion(prompt, temp=0.):
response = openai.Completion.create(model=model,
prompt=prompt,
max_tokens=1000,
temperature=temp,
logprobs=5)
return response

[ 1 a = get_completion("what you name", temp=0.)
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Asymptotic class-dependent efficiency

Fixing Type I errorin (0, 1), the pivot-based test statistic T, = Z h(Y3) satisfies

lim sup Type Il errort < exp(—Rp(h)),

n—oo

where P-efficiency rate Rp(h) is

Rp(h) = — inf {6Eoh(Y) +log ¢p n(0)} with ¢p p(0) = sup Eq p a—0h(Y)
620 PP

o
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Asymptotic class-dependent efficiency

Fixing Type I errorin (0, 1), the pivot-based test statistic T, = Z h(Y3) satisfies

lim sup Type Il errort < exp(—Rp(h)),

n—oo

where P-efficiency rate Rp(h) is

Rp(h) = — inf {0Eoh(Y) + log ¢p.n(0)} with ¢p s (0) = sup Ey pe ")
620 PeP

v,

e Tight in the minimax sense. Bahadur efficiency when P is a singleton
e Monotonicity: Rp, (h) = Rp,(h) if Py C P
e Rp(h) =0foranyhif Pincludes (0,...,0,1,0,...,0), thereby justifying Pa
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Efficiency of the baby watermark

lim sup Type Il error < exp(—Rp(h)),

n—oo

where

Rp(h) = — inf {#Eoh(Y) + log ¢p 4(0)} with ¢p 1,(0) = sup By pe h(¥)
6>0 PcP

v

Let W = {0,1}, P, = (P, 0, P:1), ¢ beiid copies of (0, 1), with decoder

0 fG <Py
1 otherwise

we = S(B,Ct) = {
and pivot Y (w, () = 2wy — 1)(2¢ — 1). With h being identity, Rp, (h) is

— e

— inf log 7] 5

1 [ef(1=24) 4 o=0(1-24)
00 {
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A minimax formulation for Rp

. ‘ —0h(Y)
Rp(h) = —inf {F)th(Y) + sup log (ELP e ) }

Finding the optimal score h* = arg max Rp(h) reduces to a minimax problem:

: — —h(Y)
minmax L(h, P) where L(h, P) := Eoh(Y) + log (]El,pe ) J
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A minimax formulation for Rp

. ‘ —On(Y)
Rp(h) = —inf {ﬁth(Y) + sup log (ELP e ) }

Finding the optimal score h* = arg max Rp(h) reduces to a minimax problem:
g p A P

- — —h(Y)
minmax L(h, P) where L(h, P) := Eoh(Y) + log (El,pe ) J

e Unfortunately, the minimax problem is generally not convex-concave
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A minimax formulation for Rp

. ‘ —6h(Y)
Rp(h) = —inf {ﬁth(Y) + sup log (ELP e ) }

Finding the optimal score h* = arg max Rp(h) reduces to a minimax problem:

- — —h(Y)
minmax L(h, P) where L(h, P) := Eoh(Y) + log (El,pe ) J

e Unfortunately, the minimax problem is generally not convex-concave

e Case-by-case analysis is required, but we are often lucky
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Outline

4. Application to Gumbel-max watermark
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Analysis of the Gumbel-max watermark

log Uy,

w

S P, () = arg max where ¢ = (Uy,...,Uk)

with pivot Y& =T, ,,,

Lemma (Convexity lemma)

For any non-decreasing function h, the following is a convex function in P:

P ¢p(P) :=Eq pe ")

e Max part of minmax L(h, P) is
h PeP

sup log (ELP,e_h(Ygum)) = log sup ¢, (P)
PcP Pep
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Analysis of the Gumbel-max watermark

log Uy,

w

S P, () = arg max where ¢ = (Uy,...,Uk)

with pivot Y& =T, ,,,

Lemma (Convexity lemma)

For any non-decreasing function h, the following is a convex function in P:

P ¢p(P) :=Eq pe ")

e Max part of minmax L(h, P) is
h PeP
sup log (Exp,e™"0™"™) = log sup 1,(P)
PeP PeP

e Maximizing a convex function over a convex set requires examining only
the extreme points!
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Analysis of the Gumbel-max watermark

Lemma (Convexity lemma)

For any non-decreasing function h, the following is a convex function in P:

P s gp(P) =By pe "0

e Extreme points of P, are

P = (1—A,...,1—A,Z,o,...) with A=1—(1-A)- {ﬁJ
~——— e

[i2x ] times

and all its permutations
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Proof sketch of the convexity lemma |

Lemma (Convexity lemma)

For any non-decreasing function h, the following is a convex function in P:

P ¢u(P) := Ey p,e "Y*™)

e Y8'™ has a mixture of Beta distributions:

Fy p(r) = Z Pt/ Pw
weW



Proof sketch of the convexity lemma Il

e Show that P +— F p(r) is convexfor any given r € [0, 1]:

) , _
rl/Pllog% 0 0
1
VLF p(r) = P = 0
0 0 rl/wawlogTr
i By |

e ¢, (P)is a nonnegative weighted sum of F p(r):

on(P) = Fy p(r)e ")

/ Fy p(r)e " h(dr)

1
—h(1) 4 / Fup(r)e "™ h(dr)
0



Find optimal detection for Gumbel-max watermark

. _ gum
For non-decreasing h, we have sup E; pe ")

PcPa

= ]ELPA efh(ygum) J

Denoting by PX any vertex (extreme point) of Pa. For any h,

min max Eoh(Y*#"") + log (E1,p e‘th““‘))
h PePa

> m}%n Eoh(Y®"™) + log (ELP& e*h(yg"m))
= —Dxw(po, 1,PZ),

where the equality follows from the Donsker-Varadhan representation, attained

d *
ath=h* = log LPA
dpo )
When h = h* the inequality reduces to equality, because it is non-decreasing
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Optimal detection for Gumbel-max watermark

The optimal score function that achieves the highest Pa-efficiency rate Rp, (h)
takes the form

1

* 1 A _A_ . ~
gum,A(y) = IOg(\‘mJym o yl—A)’ with A = (1 = A) \\ﬂJ
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Optimal detection for Gumbel-max watermark

The optimal score function that achieves the highest Pa-efficiency rate Rp, (h)
takes the form

() =log( | —— |y 4 yTE ), with A= (1—A)|
gum,Ay_Og ]_—Ay Y , Wi - 1-A
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Optimal detection for Gumbel-max watermark

The optimal score function that achieves the highest Pa-efficiency rate Rp, (h)
takes the form

L] e, A I 1
sum,A(Y) = 10g<{mJyl—A F yl—A>, with A = (1 - A) {HJ
du,py
o hua=h =log 4
gum,A g d,u()

e Aaronson (2023) proposed hus(y) = —log(1l — y)
e Kuditipudi et al. (2023); Fernandez et al. (2023) proposed hiog (y) = logy
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Comparison with other detection rules

There exists an absolute constant A* = 0.17756 such that the following two
statements hold:

(@) When 0.001 < A < A*, hays has higher Pa-efficiency than hieg:
RPA (hlog) < RPA (harS) < RPA (hgum,A)

(b) When A* < A < 0.99, hiog has higher Pa-efficiency than hays:

Rp, (hars) < R'PA(hIOg) < Rp, (hgum,A)

® Inanycase, hy,., A has the highest rate
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lllustration of the superiority of hgum.a
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Numerical results for Gumbel-max watermark

H, Hy,A ~U(0.001,0.5
7% 107 0 L (0.001,05)
i — D
\ == hiog
6x1072{ fi  eN 0\~ hgum,o.m
5 S ~. T h*um,[).OO-'
£ 10 . il
o :
=3
=5 x 10721 &
= =
10—2 4
4% 1072

200 400 600
Unwatermarked text length

o4
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Numerical results for inverse transform watermark

0 Hy Hy, A ~ U(0.001,0.5)
0 ]
10 g
“ o
6x10724 N Moo
" 5 *
< = = D000
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Experiments on the C4 dataset using OPT-1.3B

Left: Type I; Right: Type II; Top: Gumbel-max; Bottom: Inverse transform
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Outline

5. Robust detection
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Watermark under text modification

A student might modify the text generated from an LLM, either due to
personalization or to try to escape from detection
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Watermark under text modification

A student might modify the text generated from an LLM, either due to
personalization or to try to escape from detection

e To cope with modification, Gumbel-max watermark uses a few tokens to
compute pseudorandom numbers

For example, ¢; = A(w;_s5.1—1,Key), using the last 5 tokens

e A modified token will turn the watermark signals in the next few 5 tokens to
noise
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Watermark under text modification

A student might modify the text generated from an LLM, either due to
personalization or to try to escape from detection

e To cope with modification, Gumbel-max watermark uses a few tokens to
compute pseudorandom numbers

For example, ¢; = A(w;_s5.1—1,Key), using the last 5 tokens

e A modified token will turn the watermark signals in the next few 5 tokens to
noise

Hypothesis testing under mixtures

Hy:Yi~po vs HP™:Yi P~ (1 =10 + e, p,

e 1, € {0,1} is independent or modeled by a Markov process
e Sparse mixture detection
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When is detection statistically possible?

The large deviation regime (n; = 1 and A > 0 constant) is too easy

A (difficulty) scaling regime

o En =e, withe, xn~"forp e (0,1]
e max P, =1—A, withA,, <n~%forqg e (0,1)
weW

v

Theorem (Phase transition)

e Ifq+2p> 1, Hy and H}™™ merge asymptotically

e Ifq+2p < 1, Hy and H™* separate asymptotically

e How to achieve robust detection in the regime ¢ + 2p < 17 LRTis
impractical since it requires knowing P;’s
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Optimal adaptive detection: Goodness-of-fit (GoF) test

1 ¢ m
Empirical CDF of p-values: F,,(r) = — E lp,<r Wherep, =1 — V#"
n
=1

Introduce a scalar convex function indexed by s:

zlogx —x + 1, if s=1
1—s+sz—2° .
gbs(x) = W, if S§£071

—logr+x—1, if s=0

¢s-divergence between Bern(u) and Bern(v):

1—w

Ko(u,v) = vy (%) +(1—0)és (1 —u>

For s € [0,2], reject Hy if nS;} (s) :==n sup K (Fy(r),r)lp, > is larger
re(0,1)
than a certain threshold
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Adaptive optimality and optimal efficiency

Theorem (Adaptive optimality)

Let g+ 2p < 1 and s € [0, 2]. Setting the threshold < loglogn, both the Type |
and Il errors of the GoF test tend to O as n — oo
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Adaptive optimality and optimal efficiency

Theorem (Adaptive optimality)

Let g+ 2p < 1 and s € [0, 2]. Setting the threshold < loglogn, both the Type |
and Il errors of the Gof test tend to O as n — co

e Optimality without any prior knowledge
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Adaptive optimality and optimal efficiency

Theorem (Adaptive optimality)

Let g+ 2p < 1 and s € [0, 2]. Setting the threshold < loglogn, both the Type |
and Il errors of the Gof test tend to O as n — co

e Optimality without any prior knowledge

Optimal efficiency

Lets € (0,1),e, =¢ € (0,1] and A,, = A € (0,1). The score function S, (s) has

Rp,(Sy(s)) = sup  Rp,(Sn) = Dxu(ko, (1 —€)po +ep1,py)

measurable S,

® When e = 1, this rate is obtained by the sum-based test based on A, o
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Adaptive optimality and optimal efficiency

Theorem (Adaptive optimality)

Let g+ 2p < 1 and s € [0, 2]. Setting the threshold < loglogn, both the Type |
and Il errors of the Gof test tend to O as n — co

e Optimality without any prior knowledge

Optimal efficiency

Lets € (0,1),e, =¢ € (0,1] and A,, = A € (0,1). The score function S, (s) has

Rp,(Sy(s)) = sup  Rp,(Sn) = Dxu(ko, (1 —€)po +ep1,py)

measurable S,

*

® When e = 1, this rate is obtained by the sum-based test based on A, o

Theorem (Suboptimality of sum-based tests)

When e < 1, the detection boundary for sum-based tests is p + g = 1/2 for the
Gumbel-max watermark
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Empirical detection boundaries
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Suboptimality of sum-based tests

hars hlog hind.O.S
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Concluding remarks



Take-home messages

e A Statistical Framework of Watermarks for Large Language Models: Pivot,
Detection Efficiency and Optimal Rules. The Annals of Statistics, 2025

e Robust Detection of Watermarks for Large Language Models Under
Human Edlits. arXiv:2411.13868

e Astatistical framework for (unbiased) watermarks of LLMs

e Defined class-dependent efficiency measure to evaluate detection

e |dentified the optimal detection rule according to the efficiency measure
e Achieved adaptive optimality for robust estimation using GoF tests

Future directions

e Extend the analysis to finite-sample
e Multiple testing in the case of multiple LLMs (ChatGPT, Claude, ...)?
e Investigate data-driven distribution classes
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