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Gradient-based optimization

minimize f(x) using ∇f(x)

• Simplest example: gradient descent

• Almost entirely focused on differentiation

• Toolkit is (relatively) small
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Dynamical systems

• Simplest example: ordinary differential equation (ODE)

• Interplay between differentiation and integration

• A much larger toolkit

3 / 65



Connecting dynamical systems with optimization?

Leverage the power of ODEs to analyze optimization methods

• Long history (see monograph of Helmke and Moore ’96)
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This talk: connecting ODEs with gradient-based
methods

A framework for modeling, analyzing, interpreting,
and designing accelerated optimization methods

▶ Develop ODEs as amenable surrogates for accelerated optimization
methods

▶ Provide intuitive and generalizable proofs

▶ Suggest new accelerated methods
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Gradient descent

f is convex and ∇f is L-Lipschitz: ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

• ∥b−Ax∥2: least squares

• −bT (Ax+ x0) + 1T log(1 + exp(Ax+ x0)): logistic regression

• 1
2∥b−Ax∥2 + λ∥x∥1: lasso

Gradient descent for minimizing f

xk+1 = xk − s∇f(xk)

• Convergence rate

f(xk)− f⋆ ≤ O

(
1

k

)
if s = 1/L, where f⋆ = min f(x)

• ∇f(xk) replaced by proximal subgradient if f is composite (lasso)
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Accelerating the convergence

Nesterov’s accelerated gradient method ’83

xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1)︸ ︷︷ ︸

momentum

from x0 = y0

• For L-smooth convex f , Nesterov proved that for 0 < s ≤ 1/L

f(xk)− f⋆ ≤ O

(
1

k2

)
• Optimal rate with access to first-order information

• Generalized to composite minimization (Beck and Teboulle ’09)
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Solving SLOPE using Nesterov’s method

min
x

f(x) ≜ 1
2∥b−Ax∥2︸ ︷︷ ︸

smooth

+

n∑
i=1

λi|x|(i)︸ ︷︷ ︸
nonsmooth but convex

iterations
0 50 100 150 200

er
ro

r

10 -6

10 -4

10 -2

10 0

10 2

10 4 Proximal gradient
Nesterov

Error denotes f(xk)− f⋆; design matrix A is 1000× 10000
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Mysteries of acceleration

Common wisdom: momentum reduces zig zags and smooths paths

xk= yk−1 − s∇f(yk−1)

yk= xk +
k − 1

k + 2
(xk − xk−1)

• What is the underlying mechanism?

• Why k−1
k+2 ?

• Existing approaches: generalized estimate sequence (Baes ’09), Chebyshev
polynomials (Hardt ’13), linear coupling (Allen-Zhu and Orecchia ’14),
optimized first-order method (Drori and Teboulle ’14), control theory
(Lessard et al ’16)
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Outline

1. A second-order ODE

2. High-resolution ODEs

3. Concluding remarks
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The beginning of the story...
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Trajectories of Nesterov’s method

Iterates from minimizing f(x) = 5
2x

2
1 +

1
2x

2
2

-2 0 2 4 6 8 10

-2

0

2

4

6

8

10

s = 0.05/L

12 / 65



Trajectories of Nesterov’s method

Iterates from minimizing f(x) = 5
2x

2
1 +

1
2x

2
2

-2 0 2 4 6 8 10

-2

0

2

4

6

8

10

s = 0.05/L

s = 0.01/L

12 / 65



Trajectories of Nesterov’s method

Iterates from minimizing f(x) = 5
2x

2
1 +

1
2x

2
2

-2 0 2 4 6 8 10

-2

0

2

4

6

8

10

s = 0.05/L

s = 0.01/L

s = 0.001/L

12 / 65



Time scaling

Iterates at k = 2.5/
√

step size
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The limit of Nesterov’s method

Nesterov’s method
xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1)

Theorem
Taking s → 0, Nesterov’s method converges to the ODE

Ẍ(t) +
3

t
Ẋ(t) +∇f(X(t)) = 0

with X(0) = x0, Ẋ(0) = 0 in the sense lims→0 maxk≤ T√
s
∥xk −X (k

√
s) ∥ = 0

• Solution exists and unique

• A second-order ODE

• Time parameter t ≈ k
√

step size ∝
√

step size
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Derivation I

Nesterov’s method in one-line

xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1)

⇓

xk+1 − xk√
s

=
k − 1

k + 2

xk − xk−1√
s

−
√
s∇f(yk)
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Derivation II

Let tk = k
√
s. Assume xk = X(tk) for some smooth curve X

xk+1 − xk√
s

= Ẋ(tk) +
1

2
Ẍ(tk)

√
s+ o(

√
s)

xk − xk−1√
s

= Ẋ(tk)−
1

2
Ẍ(tk)

√
s+ o(

√
s)

√
s∇f(yk) =

√
s∇f(X(tk)) + o(

√
s)

Comparing coefficients of
√
s in Nesterov’s method gives

Ẍ(t) +
3

t
Ẋ(t) +∇f(X(t)) = 0
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Ask me anything

The Nesterov ODE

Ẍ +
3

t
Ẋ +∇f(X) = 0

A useful surrogate for Nesterov’s method?

I think so

Simplify some proofs for Nesterov’s method? Yes

Suggest new accelerated methods? Yes

Can the ODE do everything for the method?
Of course not, but

we’ve upgraded the
ODE

Can the upgraded ODEs do something new? Yes
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Ẍ +
3

t
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Ẍ +
3

t
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A faithful surrogate

f(x) = 5
2x

2
1 +

1
2x

2
2
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ODE solution

Trajectories
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ODE solution

Convergence
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Analogous convergence rate

Theorem (Our)

Ẍ +
3

t
Ẋ +∇f(X) = 0

⇓

f(X(t))− f⋆ ≤ 2∥x0 − x⋆∥2

t2

Theorem (Nesterov)

xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1)

⇓

f(xk)− f⋆ ≤ 2∥x0 − x⋆∥2

s(k + 1)2

• t2 ≈ s(k + 1)2
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A simple proof

Proving f(X(t))− f⋆ ≤ 2∥x0−x⋆∥2

t2

• Energy functional (Lyapunov)

E(t) = t2(f(X)− f⋆) + 2

∥∥∥∥X +
t

2
Ẋ − x⋆

∥∥∥∥2
• By convexity of f

dE
dt

= 2t(f(X)− f⋆) + 4⟨X − x⋆,− t

2
∇f(X)⟩

= 2t(f(X)− f⋆)− 2t⟨X − x⋆,∇f(X)⟩ ≤ 0

• t2(f(X(t))− f⋆) ≤ E(t) ≤ E(0) = 2∥x0 − x⋆∥2
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Comparing gradient descent with Nesterov’s method

Gradient descent ODE

• Ẋ +∇f(X) = 0

• Euler stable step size O(1/L)

• Each iteration moves ∝ s

Nesterov ODE

• Ẍ + 3
t Ẋ +∇f(X) = 0

• Euler stable step size O(1/
√
L)

• Each iteration moves ∝
√
s

x
1

x
2

 

 

Nesterov

Gradient

t = 5

t = 5 t = 15

t = 15

x
1

x
2

 

 

Nesterov

Gradient

t = 3.5

t = 3.5

t = 11.5

t = 11.5
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Suggesting new methods

New ODE
Ẍ +

r

t
Ẋ +∇f(X) = 0

Theorem
Suppose r > 3. Then

f(X(t))−f⋆ ≤ (r − 1)2∥x0 − x⋆∥2

2t2
,

∫ ∞

0

t(f(X(t))−f⋆)dt ≤ (r − 1)2∥x0 − x⋆∥2

2(r − 3)

• Acceleration remains

• If r < 3, no acceleration! (see also Attouch et al ’17)

• Proof based on E(t) = 2t2

r−1 (f(X)− f⋆) + (r − 1)∥X + t
r−1Ẋ − x⋆∥2
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Generalized Nesterov’s methods

Back to the discrete world, from y0 = x0

xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + r − 1
(xk − xk−1)

• r results from k + r − 1− (k − 1)

• Generalized to composite minimization by replacing ∇f(yk−1) with
proximal subgradient
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Generalized Nesterov’s method

For r > 3 and 0 < s ≤ 1/L

f(xk)− f⋆ ≤ (r − 1)2∥x0 − x⋆∥2

2s(k + r − 2)2

∞∑
k=1

(k + r − 1)(f(xk)− f⋆) ≤ (r − 1)2∥x0 − x⋆∥2

2s(r − 3)

• O(1/k2) convergence rate remains

• Suggests f(xk)− f⋆ = o(1/k2) asymptotically (Attouch and Peypouquet
’16)
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Numerical Examples I
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min 1
2∥Ax− b∥2 + λ∥x∥1
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Numerical Examples II

0 50 100 150
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Restarting Nesterov’s method I

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration

f 
−

 f
*

Bumps

Cause
If 3

t is small, friction is too low

• Time is set to zero whenever velocity starts to decreases

• Early restarting ideas (O’Donoghue and Candès ’12)
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Restarting Nesterov’s method II

Our restarting (srN), gradient restarting (grN) ( O’Donoghue and Candès ’12),
Nesterov’s method (oN), and proximal gradient (PG)
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Acceleration and monotonicity simultaneously?

• Nesterov’s method achieves acceleration, but is not monotone

• Gradient descent is monotone, but not accelerated

Theorem
If a first-order method can be represented as a linear combination of several
iterates and the gradient, then it cannot be both accelerated and monotone
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iterates and the gradient, then it cannot be both accelerated and monotone
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2. High-resolution ODEs
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Methods for strongly convex functions

Let f be µ-strongly convex and L-smooth

Polyak’s heavy-ball method

xk+1 = xk + α (xk − xk−1)− s∇f(xk)

Nesterov’s method

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
1−√

µs

1 +
√
µs

(yk+1 − yk)

• Polyak suggests α = (1−
√
µ/L)2
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They look similar
Let f be µ-strongly convex and L-smooth

Nesterov’s method

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
1−√

µs

1 +
√
µs

(yk+1 − yk)

Equivalent to

xk+1 = xk+
1−√

µs

1 +
√
µs

(xk − xk−1)−s∇f(xk)−
1−√

µs

1 +
√
µs

s (∇f(xk)−∇f(xk−1))︸ ︷︷ ︸
gradient correction

Polyak’s heavy-ball method

xk+1 = xk +
1−√

µs

1 +
√
µs

(xk − xk−1)− s∇f(xk)

• Only differ in gradient correction 32 / 65



They have the same ODE

Nesterov’s and Polyak’s share the same ODE (Wilson et al ’16)

Ẍ(t) + 2
√
µẊ(t) +∇f(X(t)) = 0

• The gradient correction 1−√
µs

1+
√
µss (∇f(xk)−∇f(xk−1)) is not reflected due

to low resolution
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But they are very different!

0 50 100 150
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0
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1

Heavy-ball

Nesterov

f(x1, x2) = x2
1 + 5× 10−3x2

2, x0 = (1, 1) and step size s = 0.09.

• Polyak’s: oscillations
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Need new ODEs to capture fine-grained behaviors

34 / 65



High-resolution ODEs

Let s be small but non-vanishing

High-resolution ODEs

• Polyak’s

Ẍ(t) + 2
√
µẊ(t) + (1 +

√
µs)∇f(X(t)) = 0

• Nesterov’s

Ẍ(t) + 2
√
µẊ(t) +

√
s∇2f(X(t))Ẋ(t) + (1 +

√
µs)∇f(X(t)) = 0

• X(0) = x0 and Ẋ(0) = − 2
√
s∇f(x0)
1+

√
µs

• √
s∇2f(X)Ẋ(t) results from 1−√

µs

1+
√
µss (∇f(xk)−∇f(xk−1))

• Derivation: carefully Taylor expand 1−√
µs

1+
√
µss (∇f(xk)−∇f(xk−1))
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High-resolution ODEs

• Polyak’s

Ẍ(t) + 2
√
µẊ(t) + (1 +

√
µs)∇f(X(t)) = 0

• Nesterov’s

Ẍ(t) + 2
√
µẊ(t) +

√
s∇2f(X(t))Ẋ(t) + (1 +

√
µs)∇f(X(t)) = 0

• If s = 0, high-resolution ODEs reduce to low-resolution ODE

• Modified differential equations
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High-resolution ODEs are better surrogates

f(x1, x2) = x2
1 + 5× 10−3x2

2, x0 = (1, 1)
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Nesterov
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High-resolution ODEs are better surrogates

f(x1, x2) = x2
1 + 5× 10−3x2

2, x0 = (1, 1)
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Do the high-resolution ODEs distinguish acceleration
and non-acceleration?
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The answer is in the gradient correction

The difference is in
√
s∇2f(X(t))Ẋ(t)

• Polyak’s

Ẍ(t) + 2
√
µẊ(t) + (1 +

√
µs)∇f(X(t)) = 0

• Nesterov’s

Ẍ(t) + 2
√
µẊ(t) +

√
s∇2f(X(t))Ẋ(t) + (1 +

√
µs)∇f(X(t)) = 0

• √
s∇2f(X(t))Ẋ(t) (gradient correction) gently adjusts the “friction”

• Fundamental to the acceleration of Nesterov’s method
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• Polyak’s
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Ẍ(t) + 2
√
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s∇2f(X(t))Ẋ(t) + (1 +

√
µs)∇f(X(t)) = 0

• √
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Energy functional for Nesterov’s ODE

Ẍ(t) + 2
√
µẊ(t) +

√
s∇2f(X(t))Ẋ(t) + (1 +

√
µs)∇f(X(t)) = 0

Energy functional

E(t) = (1 +
√
µs) (f(X)− f⋆)︸ ︷︷ ︸

potential

+
1

4
∥Ẋ∥2︸ ︷︷ ︸

kinetic

+
1

4
∥Ẋ + 2

√
µ(X − x⋆) +

√
s∇f(X)∥2

• Ẋ + 2
√
µ(X − x⋆) +

√
s∇f(X) results from integrating

Ẍ + 2
√
µẊ +

√
s∇2f(X)Ẋ

• √
s∇f(X) arises from gradient correction
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Convergence of Nesterov’s ODE

Energy functional

E(t) = (1 +
√
µs) (f(X)− f⋆) +

1

4
∥Ẋ∥2 + 1

4
∥Ẋ + 2

√
µ(X − x⋆) +

√
s∇f(X)∥2

Lemma

dE
dt

≤ −
√
µ

4
E −

√
s

2

[
∥∇f(X)∥2 + Ẋ⊤∇2f(X)Ẋ

]
≤ −

√
µ

4
E

• √
s
2 (∥∇f(X)∥2 + Ẋ⊤∇2f(X)Ẋ) ≥ 0 arises from gradient correction

• For s ≤ 1/L

f(X(t))− f⋆ ≤ 2 ∥x0 − x⋆∥2

s
e−

√
µt

4
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Convergence of Polyak’s ODE

Energy functional

E(t) = (1 +
√
µs) (f(X)− f⋆) +

1

4
∥Ẋ∥2 + 1

4
∥Ẋ + 2

√
µ(X − x⋆)∥2

Lemma
dE
dt

≤ −
√
µ

4
E

• √
s
2 (∥∇f(X)∥2 + Ẋ⊤∇2f(X)Ẋ) is not found

• For s ≤ 1/L

f(X(t))− f⋆ ≤ 7 ∥x0 − x⋆∥2

2s
e−

√
µt

4
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Returning to the discrete world
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Discrete energy functional for Nesterov’s

Continuous-time

E(t) = (1 +
√
µs) (f(X)− f⋆) +

1

4
∥Ẋ∥2 + 1

4
∥Ẋ + 2

√
µ(X − x⋆) +

√
s∇f(X)∥2

Discrete-time

E(k) =
1 +

√
µs

1−√
µs

(f(xk)− f⋆) +
1

4
∥vk∥2

+
1

4

∥∥∥∥vk +
2
√
µ

1−√
µs

(xk+1 − x⋆) +
√
s∇f(xk)

∥∥∥∥2 − s ∥∇f(xk)∥2

2(1−√
µs)

• Phase variable vk = xk+1−xk√
s

• Seamless transform via phase space representation
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Discrete energy functional for Nesterov’s

E(k) =
1 +

√
µs

1−√
µs

(f(xk)− f⋆) +
1

4
∥vk∥2

+
1

4

∥∥∥∥vk +
2
√
µ

1−√
µs

(xk+1 − x⋆) +
√
s∇f(xk)

∥∥∥∥2 − s ∥∇f(xk)∥2

2(1−√
µs)

Lemma

If 0 < s ≤ 1/(4L), then E(k + 1)− E(k) ≤ −
√
µs

6 E(k + 1)

• Implies

f(xk)− f⋆ ≤ 5L ∥x0 − x⋆∥2(
1 + 1

12

√
µ/L

)k
• log(f(xk)− f⋆) ≤ −O(k

√
µ/L) matches the optimal bound (Nesterov ’13)
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Discrete energy functional for Polyak’s

E(k) =
1 +

√
µs

1−√
µs

(f(xk)− f⋆) +
1

4
∥vk∥2 +

1

4

∥∥∥∥vk +
2
√
µ

1−√
µs

(xk+1 − x⋆)

∥∥∥∥2

Lemma

E(k + 1)− E(k) ≤ −√
µsmin

{
1−√

µs

1 +
√
µs

,
1

4

}
E(k + 1)

−

[
3
√
µs

4

(
1 +

√
µs

1−√
µs

)
(f(xk+1)− f⋆)− s

2

(
1 +

√
µs

1−√
µs

)2

∥∇f(xk+1)∥2
]

• Need to ensure the “annoying” term
3
√
µs

4

(
1+

√
µs

1−√
µs

)
(f(xk+1)− f⋆)− s

2

(
1+

√
µs

1−√
µs

)2
∥∇f(xk+1)∥2 ≥ 0
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Where is this “annoying” term from?

The continuous energy functional for Nesterov’s

dE
dt

≤ −
√
µ

4
E −

√
s

2

[
∥∇f(X)∥2 + Ẋ⊤∇2f(X)Ẋ

]
︸ ︷︷ ︸

D

• In fact, the “annoying” term appears in Nesterov’s, but canceled out by D

• Recall D is due to gradient correction

• Thus, the “annoying” term is due to the lack of gradient correction in
Polyak’s
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√
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When is the “annoying” term nonnegative?

Lemma (Polyak’s)

E(k + 1)− E(k) ≤ −√
µsmin

{
1−√

µs

1 +
√
µs

,
1

4

}
E(k + 1)

−

[
3
√
µs

4

(
1 +

√
µs

1−√
µs

)
(f(xk+1)− f⋆)− s

2

(
1 +

√
µs

1−√
µs

)2

∥∇f(xk+1)∥2
]

• It is nonnegative if s = O
(

µ
L2

)
in Polyak’s

• E(k + 1)− E(k) ≤ −√
µsmin

{
1−√

µs

1+
√
µs ,

1
4

}
E(k + 1)

• Take s = µ/(16L2), Polyak’s convergence

f(xk)− f(x0) ≤
5L ∥x0 − x⋆∥2(

1 + µ
16L

)k
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It is the gradient correction that matters

Nesterov’s

• Contains gradient correction

• Step size s = O
(
1
L

)
• log(f(xk)− f⋆) ≤ −O(k

√
µ/L)

• Achieves acceleration

Polyak’s

• No gradient correction

• Step size s = O
(

µ
L2

)
• log(f(xk)− f⋆) ≤ −O(kµ/L)

• No (global) acceleration

• For ill-conditioned µ ≪ L cases, O
(
1
L

)
≫ O

(
µ
L2

)
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Numerical stability

Forward Euler scheme on Nesterov’s

X(t+
√
s)−2X(t)+X(t−

√
s)

s + (2
√
µ+

√
s∇2f(X(t−

√
s))) · X(t)−X(t−

√
s)√

s
+ (1 +

√
µs)∇f(X(t−

√
s)) = 0

Stable step sizes for solving Nesterov’s

s ≤ O

(
1

L

)

Forward Euler scheme on Polyak’s

X(t+
√
s)−2X(t)+X(t−

√
s)

s + 2
√
µX(t)−X(t−

√
s)√

s
+ (1 +

√
µs)∇f(X(t−

√
s)) = 0

Stable step sizes for solving Polyak’s

s ≤ O
( µ

L2

)
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A straight or winding road?

Why Nesterov’s allows a larger step size than Polyak’s?
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• Gradient correction in Nesterov’s “smoothes out” bumps
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All roads lead to Rome, but...
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Yet another application of high-resolution ODEs
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Make gradient small

Let f be L-smooth (non-strongly) convex

How to minimize ∥∇f(x)∥2 efficiently?

• A centerpiece in non-convex optimization

• Nesterov’s achieves

∥∇f(xk)∥2 ≤ O

(
1

k2

)
because ∥∇f(xk)∥2 ≤ 2L(f(xk)− f⋆) and f(xk)− f⋆ ≤ O(1/k2). Recall

xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1)
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Is O(1/k2) the right rate?

Scaled squared gradient norm s2(k + 1)2 min0≤i≤k ∥∇f(xi)∥2

Iteration k
0 200 400 600 800 1000

s
2
(k

+
1)

2
m
in

0≤
i≤

k
‖∇

f
(x

i)
‖2

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

step size: s = 10−3 · ‖A‖−1
2

step size: s = 10−2 · ‖A‖−1
2

step size: s = 10−1 · ‖A‖−1
2

f(x) = 1
2 ⟨Ax, x⟩+ ⟨b, x⟩, where A is 500× 500

• Unfortunately, the low-resolution ODE cannot explain
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2 ⟨Ax, x⟩+ ⟨b, x⟩, where A is 500× 500

• Unfortunately, the low-resolution ODE cannot explain
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Yet another high-resolution ODE

High-resolution ODE for non-strongly convex objectives

Ẍ(t) +
3

t
Ẋ(t) +

√
s∇2f(X(t))Ẋ(t) +

(
1 +

3
√
s

2t

)
∇f(X(t)) = 0

for t ≥ 3
√
s/2, with X(3

√
s/2) = x0 and Ẋ(3

√
s/2) = −

√
s∇f(x0)

• Reduces to the low-resolution ODE if s = 0

• Contains gradient correction
√
s∇2f(X)Ẋ
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High-resolution energy functional of Nesterov’s method

E(t) = t

(
t+

√
s

2

)
(f(X)− f⋆) +

1

2
∥tẊ + 2(X − x⋆) + t

√
s∇f(X)∥2

Lemma

dE(t)
dt

≤ −
[√

st2 +

(
1

L
+

s

2

)
t+

√
s

2L

]
∥∇f(X)∥2

• ∥∇f(X)∥2 arises from gradient correction. Thus does not apply to
low-resolution ODE

• Observe

inf
t0≤u≤t

∥∇f(X(u))∥2
∫ t

t0

[√
su2 +

(
1

L
+

s

2

)
u+

√
s

2L

]
du

≤
∫ t

t0

[√
su2 +

(
1

L
+

s

2

)
u+

√
s

2L

]
∥∇f(X(u))∥2 du
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An improved rate in continuous case

Theorem
Let s = 1/L. The squared gradient norm in the high-resolution ODE satisfies

inf
t0≤u≤t

∥∇f(X(u))∥2 = O

(√
L

t3

)

• Improved from O(1/t2) to O(1/t3)

• Possible to extend the result to discrete cases?

54 / 65



An improved rate in continuous case

Theorem
Let s = 1/L. The squared gradient norm in the high-resolution ODE satisfies

inf
t0≤u≤t

∥∇f(X(u))∥2 = O

(√
L

t3

)

• Improved from O(1/t2) to O(1/t3)

• Possible to extend the result to discrete cases?

54 / 65



An improved rate in continuous case

Theorem
Let s = 1/L. The squared gradient norm in the high-resolution ODE satisfies

inf
t0≤u≤t

∥∇f(X(u))∥2 = O

(√
L

t3

)

• Improved from O(1/t2) to O(1/t3)

• Possible to extend the result to discrete cases?

54 / 65



Returning to the discrete world (which we care about)

Theorem
Let s ≤ 1/(3L), the Nesterov’s method (non-strongly convex) satisfies

min
0≤i≤k

∥∇f(xi)∥2 ≤ 8568 ∥x0 − x⋆∥2

s2(k + 1)3

• Improved from O(1/k2) to O(1/k3)

• Based on the discrete energy functional

E(k) = s(k + 3)(k + 1) (f(xk)− f⋆)

+
1

2

∥∥(k + 1)
√
svk + 2(xk+1 − x⋆) + (k + 1)s∇f(xk)

∥∥2 ,
which satisfies E(k + 1)− E(k) ≤ −Cs2k2 ∥∇f(xk+1)∥2

• s2k2 ∥∇f(xk+1)∥2 due to gradient correction
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More comments on the improved rate

Theorem
Let s ≤ 1/(3L), Nesterov’s method (non-strongly convex) satisfies

min
0≤i≤k

∥∇f(xi)∥2 ≤ 8568 ∥x0 − x⋆∥2

s2(k + 1)3

• Previously, the best known bound of Nesterov is o(1/k2)

• Sharpest known bound (without modification)

• Why minimization of gradient is easier?
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Simulations I

Iteration k
0 200 400 600 800 1000

s
2
(k

+
1
)3

m
in

0≤
i≤

k
‖
∇
f
(x

i)
‖2

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

step size: s = 10−3 · ‖A‖−1
2

step size: s = 10−2 · ‖A‖−1
2

step size: s = 10−1 · ‖A‖−1
2

Scaled squared gradient norm s2(k + 1)3 min0≤i≤k ∥∇f(xi)∥2.
f(x) = 1

2 ⟨Ax, x⟩+ ⟨b, x⟩, where A is 500× 500
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Simulations II

Iteration k
0 200 400 600 800 1000

s
2
(k

+
1)

3
m
in

0≤
i≤

k
‖∇

f
(x

i)
‖2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

step size: s = 10−3

step size: s = 10−2

step size: s = 10−1

Scaled squared gradient norm s2(k + 1)3 min0≤i≤k ∥∇f(xi)∥2.

f(x) = ρ log

{
200∑
i=1

exp [(⟨ai, x⟩ − bi) /ρ]

}
, where A = [a1, . . . , a200]

′ is 200× 50

and ρ = 20
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Can the high-resolution ODEs suggest new methods?
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Extensions for non-strongly convex functions

Generalized high-resolution ODE

Ẍ +
α

t
Ẋ + β

√
s∇2f(X)Ẋ +

(
1 +

α
√
s

2t

)
∇f(X) = 0

for t ≥ α
√
s/2, with X(α

√
s/2) = x0 and Ẋ(α

√
s/2) = −

√
s∇f(x0)

• Reduces to the original Nesterov’s if α = 3, β = 1

Generalized Nesterov’s method

yk+1 = xk − βs∇f(xk)

xk+1 = xk − s∇f(xk) +
k

k + α
(yk+1 − yk),

starting with x0 = y0
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Accelerated rates

yk+1 = xk − βs∇f(xk)

xk+1 = xk − s∇f(xk) +
k

k + α
(yk+1 − yk),

Theorem
If α ≥ 3 and β > 1

2 , then

f(xk)− f⋆ ≤ O

(
1

k2

)
, min

0≤i≤k
∥∇f(xi)∥2 ≤ O

(
1

k3

)
In addition, if α > 3 then

f(xk)− f⋆ ≤ o

(
1

k2

)

• Why β > 1
2? A phase transition at certain β⋆

• f(xk)− f⋆ ≤ o
(

1
k2

)
for α > 3 extends Attouch and Peypouquet ’16
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Outline

1. A second-order ODE

2. High-resolution ODEs

3. Concluding remarks
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A new framework for understanding optimization
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Rambling thoughts

Hermann Weyl

In these days the angel of topology
and the devil of abstract algebra
fight for the soul of every individual
discipline of mathematics

• Algebraic topology. What is dynamical systems + optimization?

• Gaps between discrete and continuous worlds exist

• Need more research efforts
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Take home messages

• ODEs are amenable tools for analyzing gradient-based methods

• Conceptually simple, suggest new methods

• Sometimes, need to “upgrade” ODEs

• Non-convex, stochastic, constrained settings? Many research opportunities
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Thank you!

• A Differential Equation for Modeling Nesterov’s Accelerated Gradient
Method: Theory and Insights
with Boyd and Candès, Journal of Machine Learning Research, 2016

• Understanding the Acceleration Phenomenon via High-Resolution
Differential Equations
with Shi, Du, and Jordan, arXiv, 2018

• Acceleration via Symplectic Discretization of High-Resolution Differential
Equations
with Shi, Du, and Jordan, NeurIPS, 2019

• Acknowledgment: Sloan Research Fellowship, NSF CAREER Award, and Wharton
Dean’s Research Fund
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