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APPENDIX A: PROOFS OF TECHNICAL RESULTS

As is standard, we write an � bn for two positive sequences an and bn
if there exist two constants C1 and C2 (possibly depending on q) such that
C1an ≤ bn ≤ C2an for all n. Also, we write an ∼ bn if an/bn → 1.

A.1. Proofs for Section 2. We remind the reader that the proofs in
this subsection rely on some lemmas to be stated later in the Appendix.

Proof of (2.1). For simplicity, denote by β̂ the (full) Lasso solution
β̂Lasso, and b̂S the solution to the reduced Lasso problem

minimize
b∈Rk

1

2
‖y −XSb‖2 + λ‖b‖1,

where S is the support of the ground truth β. We show that (i)

(A.1)
∥∥X ′

S
z
∥∥
∞ ≤ (1 + c/2)

√
2 log p

and (ii)

(A.2)
∥∥∥X ′SXS(βS − b̂S)

∥∥∥
∞
< C

√
(k log2 p)/n

for some constant C, both happen with probability tending to one. Now
observe that X ′

S
(y −XS b̂S) = X ′

S
z +X ′

S
XS(βS − b̂S). Hence, combining

(A.1) and (A.2) and using the fact that (k log p)/n→ 0 give∥∥∥X ′S(y −XS b̂S)
∥∥∥
∞
≤
∥∥∥X ′SXS(βS − b̂S)

∥∥∥
∞

+
∥∥X ′

S
z
∥∥
∞

≤ C
√

(k log2 p)/n+ (1 + c/2)
√

2 log p

= o(
√

2 log p) + (1 + c/2)
√

2 log p

< (1 + c)
√

2 log p

∗Supported in part by a General Wang Yaowu Stanford Graduate Fellowship.
†Supported in part by NSF under grant CCF-0963835 and by the Math + X Award

from the Simons Foundation.

1

http://arxiv.org/abs/arXiv:1503.08393


2 W. SU AND E. CANDÈS

with probability approaching one. This last inequality together with the
fact that b̂S obeys the KKT conditions for the reduced Lasso problem imply
that padding b̂S with zeros on S obeys the KKT conditions for the full Lasso
problem and is, therefore, solution.

We need to justify (A.1) and (A.2). First, Lemmas A.6 and A.5 imply
(A.1). Next, to show (A.2), we rewrite the left-hand side in (A.2) as

X ′
S
XS(βS − b̂S) = X ′

S
XS(X ′SXS)−1(X ′S(y −XS b̂S)−X ′Sz).

By Lemma A.7, we have that∥∥∥X ′S(y −XS b̂S)−X ′Sz
∥∥∥ ≤ √kλ+

∥∥X ′Sz∥∥ ≤ √kλ+
√

32k log(p/k) ≤ C ′
√
k log p

holds with probability at least 1 − e−n/2 − (
√

2ek/p)k → 1. In addition,
Lemma A.11 with t = 1/2 gives∥∥XS(X ′SXS)−1

∥∥ ≤ 1√
1− 1/n−

√
k?/n− 1/2

< 3

with probability at least 1−e−n/8 → 1. Hence, from the last two inequalities
it follows that

(A.3)
∥∥∥XS(X ′SXS)−1(X ′S(y −XS b̂S)−X ′Sz)

∥∥∥ ≤ C ′′√k log p

with probability at least 1 − e−n/2 − (
√

2ek/p)k − e−n/8 → 1. Since X ′
S

is

independent of XS(X ′SXS)−1(X ′S(y −XS b̂S)−X ′Sz), Lemma A.6 gives∥∥∥X ′SXS(X ′SXS)−1(X ′S(y −XS b̂S)−X ′Sz)
∥∥∥
∞

≤
√

2 log p

n

∥∥∥XS(X ′SXS)−1(X ′S(y −XS b̂S)−X ′Sz)
∥∥∥

with probability approaching one. Combining this with (A.3) gives (A.2).
Let b̃S be the solution to

minimize
b∈Rk

1

2

∥∥βS +X ′Sz − b
∥∥2

+ λ‖b‖1.

To complete the proof of (2.1), it suffices to establish (i) that for any constant
δ > 0,

(A.4) sup
‖β‖0≤k

P

(
‖b̃S − βS‖2

2(1 + c)2k log p
> 1− δ

)
→ 1,
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and (ii)

(A.5) ‖b̃S − b̂S‖ = oP

(
‖b̃S − βS‖

)
since (A.4) and (A.5) give

(A.6) sup
‖β‖0≤k

P

(
‖b̂S − βS‖2

2(1 + c)2k log p
> 1− δ

)
→ 1

for each δ > 0. Note that taking δ = 1 − 1/(1 + c)2 in (A.6) and using the
fact that b̂S is solution to Lasso with probability approaching one finish the
proof

Proof of (A.4). Let βi = ∞ if i ∈ S and otherwise zero (treat ∞ as a
sufficiently large positive constant). For each i ∈ S, b̃S,i = βi+X

′
iz−λ, and

|̃bS,i − βi| = |X ′iz − λ| ≥ λ− |X ′iz|.

On the event {maxi∈S |X ′iz| ≤ λ}, which happens with probability tending
to one, this inequality gives

‖b̃S − βS‖2 ≥
∑
i∈S

(λ− |X ′iz|)2 = kλ2 − 2λ
∑
i∈S
|X ′iz|+

∑
i∈S

(X ′iz)2

= (1 + oP(1))2(1 + c)2k log p,

where we have used that both
∑

i∈S(X ′iz)2 and
∑

i∈S |X ′iz| are OP(k). This
proves the claim.

Proof of (A.5). Apply Lemma 4.2 with T replaced by S (here each of
b̂S , b̃S and β is supported on S). Since k/p→ 0, for any constant δ′ > 0, all
the singular values of XS lie in (1−δ′, 1+δ′) with overwhelming probability
(see, for example, [5]). Consequently, Lemma 4.2 ensures (A.5).

Proof of (2.2). We assume σ = 1 and put λ = λBH. As in the proof of
Theorem 1.1, we decompose the total loss as

|β̂Seq − β‖2 = ‖β̂Seq,S − βS‖2 + ‖β̂
Seq,S − βS‖

2 = ‖β̂Seq,S − βS‖2 + ‖β̂
Seq,S‖

2.

The largest possible value of the loss off support is achieved when yS is
sequentially soft-thresholded by λ−[k]. Hence, by the proof of Lemma 3.3,
we obtain

E ‖β̂
Seq,S‖

2 = o (2k log(p/k))

for all k-sparse β.
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Now, we turn to consider the loss on support. For any i ∈ S, the loss is
at most (

|zi|+ λr(i)
)2

= λ2
r(i) + z2

i + 2|zi|λr(i).

Summing the above equalities over all i ∈ S gives

E ‖β̂Seq,S − βS‖2 ≤
k∑
i=1

λ2
i +

∑
i∈S

z2
i + 2

∑
i∈S
|zi|λr(i).

Note that the first term
∑k

i=1 λ
2
i = (1 + o(1)) 2k log(p/k), and the second

term has expectation E
∑

i∈S z
2
i = k = o(2k log(p/k)), so that it suffices to

show that

(A.7) E

[
2
∑
i∈S
|zi|λr(i)

]
= o (2k log(p/k)) .

We emphasize that both zi and r(i) are random so that {λr(i)}i∈S and
{zi}i∈S may not be independent. Without loss of generality, assume S =
{1, . . . , k} and for 1 ≤ i ≤ k, let r′(i) be the rank of the ith observation
among the first k. Since λ is nonincreasing and r′(i) ≤ r(i), we have∑

1≤i≤k
|zi|λr(i) ≤

∑
1≤i≤k

|zi|λr′(i) ≤
∑

1≤i≤k
|z|(i)λi,

where |z|(1) ≥ · · · ≥ |z|(k) are the order statistics of z1, . . . , zk. The second
inequality follows from the fact that for any nonnegative sequences {ai}
and {bi},

∑
i aibi ≤

∑
i a(i)b(i). Therefore, letting ζ1, . . . , ζk be i.i.d. N (0, 1),

(A.7) follows from the estimate

(A.8)

k∑
i=1

λi E |ζ|(i) = o (2k log(p/k)) .

To argue about (A.8), we work with the approximations λi ∼
√

2 log(p/i)

and E |ζ|(i) = O
(√

2 log(2k/i)
)

(see e.g. (A.15)), so that the claim is a

consequence of
k∑
i=1

√
log

p

i
log

2k

i
= o (2k log(p/k)) ,
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which is justified as follows:

k∑
i=1

√
log

p

i
log

2k

i
≤ k

∫ 1

0

√
log

p/k

x
log

2

x
dx

≤ k
∫ 1

0

√
log

p

k

√
log

2

x
+

log 1
x

√
log 2

x

2
√

log(p/k)
dx

= C1k

√
log

p

k
+

C2k√
log(p/k)

for some absolute constants C1, C2. Since log(p/k)→∞, it is clear that the
right-hand side of the above display is of o(2k log(p/k)).

A.2. Proofs for Section 3. To begin with, we derive a dual formula-
tion of the SLOPE program (1.6), which provides a nice geometrical inter-
pretation. This dual formulation will also be used in the proof of Lemma
4.3. Our exposition largely borrows from [2].

Rewrite (1.6) as

(A.9) minimize
b,r

1

2
‖r‖2 +

∑
i

λi|b|(i) subject to Xb+ r = y,

whose Lagrangian is

L(b, r,ν) :=
1

2
‖r‖2 +

∑
i

λi|b|(i) − ν ′(Xb+ r − y).

Hence, the dual objective is given by

inf
b,r
L(b, r,ν) = ν ′y − sup

r

{
ν ′r − 1

2
‖r‖2

}
− sup

b

{
(X ′ν)′b−

∑
i

λi|b|(i)

}

= ν ′y − 1

2
‖ν‖2 −

{
0 ν ∈ Cλ,X
+∞ otherwise,

where Cλ,X := {ν : X ′ν is majorized by λ} is a (convex) polytope. It thus
follows that the dual reads

(A.10) maximize
ν

ν ′y − 1

2
‖ν‖2 subject to ν ∈ Cλ,X .

The equality ν ′y − ‖ν‖2/2 = −‖y − ν‖2/2 + ‖y‖2/2 reveals that the dual
solution ν̂ is indeed the projection of y onto Cλ,X . The minimization of
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the Lagrangian over r is attained at r = ν. This implies that the primal
solution β̂ and the dual solution ν̂ obey

(A.11) y −Xβ̂ = ν̂.

We turn to proving the facts.

Proof of Fact 3.1. Without loss of generality, suppose both a and b
are nonnegative and arranged in nonincreasing order. Denote by Tak the sum
of the first k terms of a with Ta0 , 0, and similarly for b. We have

‖a‖2 =

p∑
k=1

ak(T
a
k −Tak−1) =

p−1∑
k=1

Tak (ak−ak+1)+apT
a
p ≥

p−1∑
k=1

T bk (ak−ak+1)+apT
b
p =

p∑
k=1

akbk.

Similarly,

‖b‖2 =

p−1∑
k=1

T bk (bk−bk+1)+bpT
b
p ≤

p−1∑
k=1

Tak (bk−bk+1)+bpT
a
p =

p∑
k=1

bk(T
a
k −Tak−1) =

p∑
k=1

akbk,

which proves the claim.

Proofs of Facts 3.2 and 3.3. Taking X = Ip in the dual formula-
tion, (A.11) immediately implies that a − proxλ (a) is the projection of a
onto the polytope Cλ,Ip . By definition, Cλ,Ip consists of all vectors majorized
by λ. Hence, a − proxλ (a) is always majorized by λ. In particular, if a is
majorized by λ, then the projection a−proxλ (a) of a is identical to a itself.
This gives proxλ (a) = 0.

Proof of Fact 3.4. Assume a is nonnegative without loss of generality.
It is intuitively obvious that

b ≥ a =⇒ proxλ (b) ≥ proxλ (a) ,

where as usual b ≥ a means that b− a ∈ Rp+. In other words, if the obser-
vations increase, the fitted values do not decrease. To save time, we directly
verify this claim by using Algorithm 3 (FastProxSL1) from [2]. By the av-
eraging step of that algorithm, we can see that for each 1 ≤ i, j ≤ p,

∂ [proxλ (a)]i
∂aj

=

{
1

#{1≤k≤p: [proxλ(a)]k=[proxλ(a)]j}
, proxλ (a)j = proxλ (a)i > 0,

0, otherwise.

This holds for all a ∈ Rp except for a set of measure zero. The nonnegativity
of ∂ [proxλ (a)]i /∂aj along with the Lipschitz continuity of the prox imply
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the monotonicity property. A consequence is that ‖ [proxλ (a)]T ‖ does not
decrease as we let ai →∞ for all i ∈ T . In the limit, ‖ [proxλ (a)]T ‖ mono-
tonically converges to ‖ proxλ−|T |

(
aT
)
‖. This gives the desired inequality.

As a remark, we point out that the proofs of Facts 3.2 and 3.3 suggest
a very simple proof of Lemma 3.1. Since a − proxλ (a) is the projection of
a onto Cλ,Ip , ‖ proxλ (a) ‖ is thus the distance between a and the polytope
Cλ,Ip . Hence, it suffices to find a point in the polytope at a distance of
‖(|a| − λ)+‖ away from a. The point b defined as bi = min{|ai|, λi} does
the job.

Now, we proceed to prove the preparatory lemmas for Theorem 1.1,
namely, Lemmas A.3 and A.4. The first two lemmas below can be found
in [1].

Lemma A.1. Let U be a Beta(a, b) random variable. Then

E logU = (log Γ(a))′ − (log Γ(a+ b))′,

where Γ denotes the Gamma function and (log Γ(x))′ is the derivative with
respect to x.

Lemma A.2. For any integer m ≥ 1,

(log Γ(m))′ = −γ +

m−1∑
j=1

1

j
= logm+O

( 1

m

)
,

where γ = 0.577215 · · · is the Euler constant.

Lemma A.3. Let ζ ∼ N (0, Ip−k). Under the assumptions of Theorem
1.1, for any constant A > 0,

1

2k log(p/k)

bAkc∑
i=1

E
(
|ζ|(i) − λBH

k+i

)2
+
→ 0.

Proof of Lemma A.3. Write λi = λBH
i for simplicity. It is sufficient

to prove a stronger version in which the order statistics |ζ|(i) come from p
i.i.d. N (0, 1). The reason is that the order statistics will be stochastically

larger, thus enlarging E
(
|ζ|(i) − λBH

k+i

)2
+

, since (ζ − λ)2
+ is nondecreasing in

ζ. Applying the bias-variance decomposition, we get
(A.12)

E
(
|ζ|(i) − λk+i

)2
+
≤ E

(
|ζ|(i) − λk+i

)2
= Var(|ζ(i)|) +

(
E |ζ(i)| − λk+i

)2
.
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We proceed to control each term separately.
For the variance, a direct application of Proposition 4.2 in [3] gives

(A.13) Var(|ζ(i)|) = O
( 1

i log(p/i)

)
for all i ≤ p/2. Hence,

bAkc∑
i=1

Var(|ζ(i)|) = O

bAkc∑
i=1

1

i log(p/i)

 = o(2k log(p/k)),

where the last step makes use of log(p/k)→∞. It remains to show that

(A.14)

bAkc∑
i=1

(
E |ζ(i)| − λk+i

)2
= o(2k log(p/k)).

Let U1, . . . , Up be i.i.d. uniform random variables on (0, 1) and U(i) be the

ith smallest—please note that for a change, the Ui’s are sorted in increasing
order. We know that U(i) is distributed as Beta(i, p + 1 − i) and that |ζ|(i)
has the same distribution as Φ−1(1 − U(i)/2). Making use of Lemmas A.1
and A.2 then gives

E |ζ|2(i) = E
[
Φ−1(1− U(i)/2)2

]
∼ E

[
2 log(2/U(i))

]
= 2 log 2+2

p∑
j=i

1

j
= (1+o(1))2 log(p/i),

where the second step follows from (1 + oP(1))2 log(2/U(i)) ≤ Φ−1(1 −
U(i)/2)2 ≤ 2 log(2/U(i)) for i = o(p). As a result,

(A.15)
E |ζ(i)| ≤

√
E |ζ|2(i) = (1 + o(1))

√
2 log(p/i)

E |ζ(i)| =
√

E |ζ|2(i) −Var(|ζ|(i)) = (1 + o(1))
√

2 log(p/i).

Similarly, since k + i = o(p) and q is constant, we have the approximation

λk+i = (1 + o(1))
√

2 log(p/(k + i)),

which together with (A.15) reveals that
(A.16)(
E |ζ(i)| − λk+i

)2 ≤ (1+o(1)) 2
[√

log(p/i)−
√

log(p/(k + i))
]2

+o(1) log(p/i).
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The second term in the right-hand side contributes at most o(1)Ak log(p/(Ak)) =
o(1) 2k log(p/k) in the sum (A.14). For the first term, we get[√

log(p/i)−
√

log(p/(k + i))
]2

=
log2(1 + k/i)[√

log(p/i) +
√

log(p/(k + i))
]2 = o(1) log2(1+k/i).

Hence, it contributes at most
(A.17)

o(1)

bAkc∑
i=1

log2(1 + k/i) ≤ o(1)

bAkc∑
i=1

k

∫ i
k

i−1
k

log2(1 + 1/x)dx

= o(1)k

∫ A

0
log2(1 + 1/x)dx = o(2k log(p/k)).

Combining (A.17), (A.16) and (A.14) concludes the proof.

Lemma A.4. Let ζ ∼ N (0, Ip−k) and A > 0 be any constant satisfying
q(1 +A)/A < 1. Then, under the assumptions of Theorem 1.1,

1

2k log(p/k)

p−k∑
i=dAke

E
(
|ζ|(i) − λBH

k+i

)2
+
→ 0.

Proof of Lemma A.4. Again, write λi = λBH
i for simplicity. As in the

proof of Lemma A.3 we work on a stronger version by assuming ζ ∼ N (0, Ip).
Denote by q′ = q(1 + A)/A. For any u ≥ 0, let αu := P(|N (0, 1)| >
λk+i + u) = 2Φ(−λk+i− u). Then P(|ζ|(i) > λk+i + u) is just the tail proba-
bility of the binomial distribution with p trials and success probability αu.
By the Chernoff bound, this probability is bounded as

(A.18) P(|ζ|(i) > λk+i + u) ≤ e−pKL(i/p‖αu),

where KL(a‖b) := a log a
b +(1−a) log 1−a

1−b is the Kullback-Leibler divergence.
Note that

(A.19)
∂KL(i/p‖b)

∂b
= − i/p

b
+

1− i/p
1− b

≤ − i

pb
+ 1

for all 0 < b < i/p. Hence, from (A.19) it follows that
(A.20)

KL (i/p‖αu)−KL (i/p‖α0) = −
∫ α0

αu

∂KL

∂b
db ≥

∫ α0

αu

i

pb
− 1db

≥
∫ α0

e−uλk+iα0

i

pb
− 1db

=
iuλk+i

p
− α0

(
1− e−uλk+i

)
,
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where the second inequality makes use of αu ≤ e−uλk+iα0. With the proviso
that q(1 +A)/A < 1 and i ≥ Ak, it follows that

(A.21) α0 = q(k + i)/p ≤ q′i/p.

Hence, substituting (A.21) into (A.20), we see that (A.18) yields

(A.22)

P(|ζ|(i) > λk+i + u) ≤ e
−p
(

KL( i
p
‖αu)−KL( i

p
‖α0)
)
e
−pKL( i

p
‖α0)

≤ e
−p
(

KL( i
p
‖αu)−KL( i

p
‖α0)
)

≤ exp
(
−iuλk+i + q′i

(
1− exp

(
− uλk+i

)))
.

With this preparation, we conlude the proof of our lemma as follows:

E
(
|ζ|(i) − λk+i

)2
+

=

∫ ∞
0

P
(
(|ζ|(i) − λk+i)

2
+ > x

)
dx

=

∫ ∞
0

P(|ζ|(i) > λk+i +
√
x)dx

= 2

∫ ∞
0

uP(|ζ|(i) > λk+i + u)du,

and plugging (A.22) gives

E
(
|ζ|(i) − λk+i

)2
+
≤ 2

∫ ∞
0

u exp
(
− iuλk+i + q′i

(
1− exp

(
− uλk+i

)))
du

=
2

λ2
k+i

∫ ∞
0

xe−(x−q′(1−e−x))idx

≤ 2

λ2
p

∫ ∞
0

xe−(x−q′(1−e−x))idx.

This yields the upper bound

p−k∑
i=dAke

E
(
|ζ|(i) − λk+i

)2
+
≤ 2

λ2
p

p−k∑
i=dAke

∫ ∞
0

xe−(x−q′(1−e−x))idx

≤ 2

Φ−1(1− q/2)2

∞∑
i=1

∫ ∞
0

xe−(x−q′(1−e−x))idx

=
2

Φ−1(1− q/2)2

∫ ∞
0

xe−(x−q′(1−e−x))

1− e−(x−q′(1−e−x))
dx.

Since the integrand obeys

lim
x→0

xe−(x−q′(1−e−x))

1− e−(x−q′(1−e−x))
=

1

1− q′
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and decays exponentially fast as x→∞, we conclude that
∑p−k

i=dAke E(|ζ|(i)−
λk+i)

2
+ is bounded by a constant. This is a bit more than we need since

2k log(p/k)→∞.

A.3. Proofs for Section 4. In this paper, we often use the Borell
inequality to show that P(‖N (0, In)‖ >

√
n+ t) ≤ exp(−t2/2).

Lemma A.5 (Borell’s inequality). Let ζ ∼ N (0, In) and f be an L-
Lipschitz continuous function in Rn. Then

P (f(ζ) > E f(ζ) + t) ≤ e−
t2

2L2

for every t > 0.

Lemma A.6. Let ζ1, . . . , ζp be i.i.d. N (0, 1). Then

max
i
|ζi| ≤

√
2 log p

holds with probability approaching one.

The latter classical result can be proved in many different ways. Suffices
to say that it follows from a more subtle fact, namely, that√

2 log p

(
max
i
ζi −

√
2 log p+

log log p+ log 4π

2
√

2 log p

)
converges weakly to a Gumbel distribution [4].

Proof of Lemma 4.3. Let β̂lift be the lift of b̂T in the sense that β̂lift
T =

b̂T and β̂lift
T

= 0 and let |T | = m. Further, set ν̃ := y−XT b̂T = y−Xβ̂lift.
Applying (A.10) and (A.11) to the reduced SLOPE program, we get that

X ′T ν̃ � λ[m].

By the assumption, X ′
T
ν̃ is majorized by λ−[m]. Hence, X ′ν̃—the concate-

nation of X ′T ν̃ and X ′
T
ν̃—is majorized by λ = (λ[m],λ−[m]). This confirms

that ν̃ is dual feasible with respect to the full SLOPE program. If addition-
ally we show that

(A.23)
1

2
‖y −Xβ̂lift‖2 +

∑
i

λi|β̂lift|(i) = ν̃ ′y − 1

2
‖ν̃‖2,
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then the strong duality claims that β̂lift and ν̃ must, respectively, be the
optimal solutions to the full primal and dual.

In fact, (A.23) is self-evident. The right-hand side is the optimal value of
the reduced dual (i.e., replacing X and λ by XT and λ[m] in (A.10)), while
the left-hand side agrees with the optimal value of the reduced primal since

1

2
‖y −Xβ̂lift‖2 =

1

2
‖y −Xb̂T ‖2 and

p∑
i=1

λi|β̂lift|(i) =
m∑
i=1

λi |̂bT |(i).

Since the reduced primal only has linear equality constraints and is clearly
feasible, strong duality holds, and (A.23) follows from this.

Lemma A.7. Let 1 ≤ k? < p be any (deterministic) integer, then

sup
|T |=k?

‖X ′Tz‖ ≤
√

32k? log(p/k?)

with probability at least 1 − e−n/2 − (
√

2ek?/p)k
?
. Above, the supremum is

taken over all the subsets of {1, . . . , p} with cardinality k?.

Proof of Lemma A.7. Conditional on z, it is easy to see that X ′z
is distributed as i.i.d. centered Gaussian random variables with variance
‖z‖2/n. This observation enables us to write

X ′z
d
=
‖z‖√
n

(ζ1, . . . , ζp),

where ζ := (ζ1, . . . , ζp) consists of i.i.d. N (0, 1) independent of ‖z‖. Hence,
it is sufficient to prove that

‖z‖ ≤ 2
√
n, |ζ|2(1) + · · ·+ |ζ|2(k?) ≤ 8k? log(p/k?)

simultaneously with probability at least 1 − e−n/2 −
(√

2ek?/p
)k?

. From

Lemma A.5, we know that P(‖z‖ > 2
√
n) ≤ e−n/2 so we just need to

establish the other inequality. To this end, observe that

P
(
|ζ|2(1) + · · ·+ |ζ|2(k?) > 8k? log(p/k?)

)
≤ E e

1
4

(
|ζ|2

(1)
+···+|ζ|2

(k?)

)
e2k? log p

k?

≤
∑

i1<···<ik? E e
1
4

(
|ζ|2i1+···+|ζ|2ik?

)
e2k? log p

k?

=

(
p
k?

)
2k

?/2

e2k? log p
k?

≤
(√2ek?

p

)k?
.
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We record an elementary result which simply follows from Φ−1(1−c/2) ≤√
2 log 1/c for each 0 < c < 1.

Lemma A.8. Fix 0 < q < 1. Then for all 1 ≤ k ≤ p/2,

k∑
i=1

(λBH
i )2 ≤ Cq · k log(p/k),

for some constant Cq > 0.

In the next two lemmas, we use the BHq critical values λBH to majorize
sequences of Gaussian order statistics. Again, a � b means that b majorizes
a.

Lemma A.9. Given any constant c > 1/(1−q), suppose max{ck, k+d} ≤
k? < p for any (deterministic) sequence d that diverges to∞. Let ζ1, . . . , ζp−k
be i.i.d. N (0, 1). Then(

|ζ|(k?−k+1), |ζ|(k?−k+2), . . . , |ζ|(p−k)

)
�
(
λBH
k?+1, λ

BH
k?+2, . . . , λ

BH
p

)
with probability approaching one.

Proof of Lemma A.9. It suffices to prove the stronger case where ζ ∼
N (0, Ip). Let U1, . . . , Up be i.i.d. uniform random variables on [0, 1] and
U(1) ≤ · · · ≤ U(p) the corresponding order statistics. Since

(|ζ|(k?−k+1), . . . , |ζ|(p−k))
d
=
(
Φ−1(1− U(k?−k+1)/2), . . . ,Φ−1(1− U(p−k)/2)

)
,

the conclusion would follow from

P
(
U(k?−k+j) ≥ q(k? + j)/p, ∀j ∈ {1, . . . , p− k?}

)
→ 1.

Let E1, . . . , Ep+1 be i.i.d. exponential random variables with mean 1 and
denote by Ti = E1 + · · · + Ei. Then the order statistics U(i) have the same
joint distribution with Ti/Tp+1. Fixing an arbitrary constant q′ ∈ (q, 1−1/c),
we have

P
(
U(k?−k+j) ≥ q(k? + j)/p, ∀j

)
≥ P

(
Tk?−k+j ≥ q′(k? + j), ∀j

)
−P
(
Tp+1 > q′p/q

)
.

Since P (Tp+1 > q′p/q) → 0 by the law of large numbers, it is sufficient to
prove

(A.24) P
(
Tk?−k+j ≥ q′(k? + j), ∀j ∈ {1, . . . , p− k?}

)
→ 1.
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This event can be rewritten as

Tk?−k+j − Tk?−k − q′j ≥ q′k? − Tk?−k

for all 1 ≤ j ≤ p− k?. Hence, (A.24) is reduced to proving

(A.25) P
(

min
1≤j≤p−k?

Tk?−k+j − Tk?−k − q′j ≥ q′k? − Tk?−k
)
→ 1.

As a random walk, Tk?−k+j −Tk?−k − q′j has i.i.d. increments with mean
1−q′ > 0 and variance 1. Thus min1≤j≤p−k? Tk?−k+j−Tk?−k−q′j converges
weakly to a bounded random variable in distribution. Consequently, (A.25)
holds if one can demonstrate that q′k? − Tk?−k diverges to −∞ as p → ∞
in probability. To see this, observe that

q′k? − Tk?−k =
q′k?

k? − k
(k? − k)− Tk?−k ≤

q′c

c− 1
(k? − k)− Tk?−k,

where we use the fact k? ≥ ck. Under our hypothesis q′c/(c − 1) < 1, the
process {q′ct/(c − 1) − Tt : t ∈ N} is a random walk drifting towards −∞.
Recognizing that k? − k ≥ d → ∞, we see that q′c(k? − k)/(c− 1)− Tk?−k
(weakly) diverges to −∞ since it corresponds to a position of the preceding
random walk at t→∞. This concludes the proof.

Lemma A.10. Let ζ1, . . . , ζp−k be i.i.d. N (0, 1). Then there exists a con-
stant Cq only depending on q such that

(ζ1, . . . , ζp−k) � Cq ·

√
log p

log(p/k)

(
λBH
k+1, . . . , λ

BH
p

)
with probability tending to one as p→∞ and k/p→ 0.

Proof of Lemma A.10. Let U1, . . . , Up−k be i.i.d. uniform random vari-
ables on [0, 1] and replace ζi by Φ−1(1− Ui/2). Note that

Φ−1 (1− Ui/2) ≤
√

2 log
2

Ui
, λBH

k+i �
√

2 log
2p

k + i
;

Hence, it suffices to prove that for some constant κ′q,

(A.26) log(2/U(i)) log(p/k) ≤ κ′q · log p · log(2p/(k + i))
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holds for all i = 1, . . . , p − k with probability approaching one. Applying
the representation given in the proof of Lemma A.9 and noting that Tp+1 =
(1 + oP(1))p, we see that (A.26) is implied by

(A.27) log(3p/Ti) log(p/k) ≤ κ′q · log p · log(2p/(k + i)).

We consider i ≤ 4
√
p and i > 4

√
p separately.

Suppose first that i ≤ 4
√
p. In this case,

log(2p/(k + i)) = (1 + o(1)) log(p/k).

Thus (A.27) would follow from

log(3p/Ti) = O(log p)

for all such i. This is, however, self-evident since Ti ≥ E1 ≥ 1/p with prob-
ability 1− e−1/p = o(1).

Suppose now that i > 4
√
p. In this case, we make use of the fact that

Ti > i/2−√p for all i with probability tending to one as p→∞. Then we
prove a stronger result, namely,

log
3p

i/2−√p
· log

p

k
≤ κ′q log p · log

2p

k + i
.

for all i > 4
√
p. This follows from the two observations below:

log
3p

i/2−√p
� log

p

i
, log

2p

k + i
≥ min

{
log

p

i
, log

p

k

}
.

In the proofs of the next two lemmas, namely, Lemma A.11 and Lemma
A.12, we introduce an orthogonal matrix Q ∈ Rn×n that obeys

Qz = (‖z‖, 0, . . . , 0) .

In the proofs, Q is further set to be measurable with respect to z. Hence,
Q is independent of X. There are many options available to construct such
a Q, including the Householder transformation. Set

W =

[
w̃

W̃

]
:= QX,
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where w̃ ∈ R1×p and W̃ ∈ R(n−1)×p. The independence between Q and
X suggests that W is still a Gaussian random matrix, consisting of i.i.d.
N (0, 1/n) entries. Note that

X ′iz = (QXi)
′(Qz) = ‖z‖(QXi)1 = ‖z‖w̃i.

This implies that S? is constructed as the union of S and the k?− k indices
in {1, . . . , p} \ S with the largest |w̃i|. Since w̃ and W̃ are independent,

we see that both W̃S? and W̃S? are also Gaussian random matrices. These
points are crucial in the proof of these two lemmas.

Lemma A.11. Let k < k? < min{n, p} be any (deterministic) integer.
Denote by σmin and σmax, respectively, the smallest and the largest singular
value of XS?. Then for any t > 0,

σmin >
√

1− 1/n−
√
k?/n− t

holds with probability at least 1− e−nt
2/2. Furthermore,

σmax <
√

1− 1/n+
√
k?/n+

√
8k? log(p/k?)/n+ t

holds with probability at least 1− e−nt
2/2 − (

√
2ek?/p)k

?
.

Proof of Lemma A.11. Recall that W̃S? ∈ R(n−1)×k? is a Gaussian
design with i.i.d. N (0, 1/n) entries. Since WS? and XS? have the the same
set of singular values, we consider WS? .

Classical theory on Wishart matrices (see [5], for example) asserts that (i)

all the singular values of W̃S? are larger than
√

1− 1/n−
√
k?/n− t with

probability at least 1 − e−nt
2/2, and (ii) are all smaller than

√
1− 1/n +√

k?/n + t with probability at least 1 − e−nt
2/2. Clearly, all the singular

values larger of WS? are at least as large as σmin(W̃S?). Thus, (i) yields
the first claim. For the other, Lemma A.7 asserts that the event ‖w̃S?‖ ≤√

8k? log(p/k?) happens with probability at least 1− (
√

2ek?/p)k
?
. On this

event,

‖WS?‖ ≤
√
‖W̃S?‖2 + 8k? log(p/k?),

where ‖ · ‖ denotes the spectral norm. Hence, (ii) gives

‖WS?‖ ≤ ‖W̃S?‖+
√

8k? log(p/k?) ≤
√

1− 1/n+
√
k?/n+t+

√
8k? log(p/k?)

with probability at least 1− e−nt
2/2 − (

√
2ek?/p)k

?
.
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Lemma A.12. Denote by b̂S? the solution to the reduced SLOPE problem
(4.6) with T = S? and λ = λε. Keep the assumptions from Lemma A.9, and
additionally assume k?/min{n, p} → 0. Then there exists a constant Cq only
depending on q such that

X ′
S?
XS?(βS? − b̂S?) � Cq ·

√
k? log p

n

(
λBH
k?+1, . . . , λ

BH
p

)
with probability tending to one.

Proof of Lemma A.12. In this proof, C is a constant that only de-
pends on q and whose value may change at each occurrence. Rearrange the
objective term as

X ′
S?
XS?(βS? − b̂S?) = X ′

S?
XS?(X

′
S?XS?)

−1(X ′S?(y −XS? b̂S?)−X ′S?z)

= X ′
S?
Q′QXS?(X

′
S?XS?)

−1(X ′S?(y −XS? b̂S?)−X ′S?z)

= X ′
S?
Q′ξ,

where

ξ := QXS?(X
′
S?XS?)

−1
(
X ′S?(y −XS? b̂S?)−X ′S?z

)
.

For future usage, note that ξ only depends on w̃ and W̃S? and is, therefore,
independent of W̃S? .

We begin by bounding ‖ξ‖. It follows from the KKT condition of SLOPE
that X ′S?(y−XS? b̂S?) is majorized by λ[k?]. Hence, it follows from Fact 3.1
that

(A.28)
∥∥∥X ′S?(y −XS? b̂S?)

∥∥∥ ≤ ‖λ[k?]‖.

Lemma A.11 with t = 1/2 gives

(A.29)
∥∥XS?(X

′
S?XS?)

−1
∥∥ ≤ (√1− 1/n−

√
k?/n− 1/2

)−1
< 2.01

with probability at least 1− e−n/8 for sufficiently large p, where in the last
step we have used k?/n→ 0. Hence, from (A.28) and (A.29) we get

(A.30)

‖ξ‖ ≤
∥∥XS?(X

′
S?XS?)

−1
∥∥ · ∥∥∥X ′S?(y −XS? b̂S?)−X ′S?z

∥∥∥
≤ 2.01

(
‖λ[k?]‖+ 4

√
2k? log(p/k?)

)
≤ 2.01

(
(1 + ε)

√
C + 4

√
2
)√

k? log(p/k?)

= C ·
√
k? log(p/k?)
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with probability at least 1 − e−n/2 − (
√

2ek?/p)k
? − e−n/8 → 1; we used

Lemma A.7 in the second line and Lemma A.8 in the third. (A.30) will help
us in finishing the proof.

Write

(A.31) X ′
S?
XS?(βS?−b̂S?) = X ′

S?
Q′ξ = W ′

S?
ξ =

(
w̃′
S?
,0
)
ξ+
(
0, W̃ ′

S?

)
ξ.

It follows from Lemma A.9 that w̃S? is majorized by
(
λBH
k?+1, λ

BH
k?+2, . . . , λ

BH
p

)
/
√
n

in probability. As a result, the first term in the right-hand side obeys
(A.32)(
w̃′
S?
,0
)
ξ = ξ1 · w̃′S? � ‖ξ‖ · w̃

′
S?
� C ·

√
k?

n
log

p

k?
(
λBH
k?+1, λ

BH
k?+2, . . . , λ

BH
p

)
with probability tending to one. For the second term, by exploiting the
independence between ξ and W̃S? , we have

(
0, W̃ ′

S?

)
ξ
d
=

√
ξ2

2 + · · ·+ ξ2
n

n
(ζ1, . . . , ζp−k?),

where ζ1, . . . , ζp−k? are i.i.d. N (0, 1/n). Since k?/p → 0, applying Lemma
A.10 gives

(ζ1, . . . , ζp−k?) � C ·

√
log p

log(p/k?)

(
λBH
k?+1, . . . , λ

BH
p

)
with probability approaching one. Hence, owing to (A.30),

(A.33)
(
0, W̃ ′

S?

)
ξ � C ·

√
k? log p

n

(
λBH
k?+1, . . . , λ

BH
p

)
holds with probability approaching one. Finally, combining (A.32) and (A.33)
gives that

X ′
S?
XS?(βS? − b̂S?) =

(
w̃′
S?
,0
)
ξ +

(
0, W̃ ′

S?

)
ξ

� C ·

(√
k?

n
log

p

k?
+

√
k? log p

n

)
·
(
λBH
k?+1, . . . , λ

BH
p

)
� C ·

√
k? log p

n

(
λBH
k?+1, . . . , λ

BH
p

)
holds with probability tending to one.
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A.4. Proofs for Section 5.

Lemma A.13. Keep the assumptions from Lemma 5.1 and let ζ1, . . . , ζp
be i.i.d. N (0, 1). Then

# {2 ≤ i ≤ p : ζi > τ + ζ1} → ∞

in probability.

Proof of Lemma A.13. With probability tending to one, τ ′ := τ + ζ1

also obeys τ ′/
√

2 log p→ 1 and
√

2 log p− τ ′ →∞. This shows that we only
need to prove a simpler version of this lemma, namely, # {1 ≤ i ≤ p : ζi > τ} →
∞ in probability.

Put ∆ =
√

2 log p−τ = o(
√

2 log p) and a = P(ξ1 > τ). Then, # {1 ≤ i ≤ p : ζi > τ}
is a binomial random variable with p trials and success probability a. Hence,
it suffices to demonstrate that ap→∞. To this end, note that

a = 1− Φ(τ) ∼ 1

τ

1√
2π

e−
τ2

2 � 1√
2 log p

e− log p−∆2/2+∆
√

2 log p

=
1

p
√

2 log p
e(1+o(1))∆

√
2 log p,

which gives

ap � 1√
2 log p

e(1+o(1))∆
√

2 log p.

Since ∆→∞ (in fact, it is sufficient to have ∆ bounded away from 0 from
below), we have

e(1+o(1))∆
√

2 log p/
√

2 log p→∞,

as we wish.

Proof of Lemma 5.1. For sufficiently large p, 2(1 − ε) log p ≤ (1 −
ε/2)τ2. Hence, it is sufficient to show

Pπ
(
‖β̂ − β‖2 ≤ (1− ε/2)τ2

)
→ 0

uniformly for all estimators β̂. Letting I be the random coordinate,

‖β̂ − β‖2 =
∑
j 6=I

β̂2
j + (β̂I − τ)2 = ‖β̂‖2 + τ2 − 2τ β̂I ,

which is smaller than or equal to (1− ε/2)τ2 if and only if

β̂I ≥
2‖β̂‖2 + ετ2

4τ
.
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Denote by A = A(y; β̂) the set of all i ∈ {1, . . . , p} such that β̂i ≥ (2‖β̂‖2 +
ετ2)/(4τ), and let b̂ be the minimum value of these β̂i. Then

b̂ ≥ 2‖β̂‖2 + ετ2

4τ
≥ 2|A|̂b2 + ετ2

4τ
≥

2

√
2|A|̂b2 · ετ2

4τ
,

which gives

(A.34) |A| ≤ 2/ε.

Recall that ‖β̂ − β‖2 ≤ (1 − ε/2)τ2 if and only if I is among these |A|
components. Hence,
(A.35)

Pπ
(
‖β̂ − β‖2 ≤ (1− ε/2)τ2

∣∣∣y) = Pπ(I ∈ A|y) =
∑
i∈A

Pπ(I = i|y) =

∑
i∈A eτyi∑p
i=1 eτyi

,

where we use the fact that A is almost surely determined by y. Since (A.35)
is maximal if A is the set of indices with the largest yi’s, (A.35) and (A.34)
together yield

Pπ
(
‖β̂ − β‖2 ≤ (1− ε/2)τ2

)
≤ Pπ

(
yI = τ + zI is at least the d2/εeth largest among y1, . . . , yp

)
→ 0,

where the last step is provided by Lemma A.13.

Proof of Lemma 5.3. To closely follow the proof of Lemma 5.1, denote
by A = A(y,X; β̂) the set of all i ∈ {1, . . . , p} such that β̂i ≥ (2‖β̂‖2 +
εα2τ2)/(4ατ), and keep the same notation b̂ as before. Then ‖β̂ − β‖2 ≤
(1− ε/2)α2τ2 if and only if I ∈ A. Hence,
(A.36)

Pπ
(
‖β̂ − β‖2 ≤ (1− ε/2)α2τ2

∣∣∣y,X) = Pπ(I ∈ A|y,X)

=
∑
i∈A

Pπ(I = i|y,X)

=

∑
i∈A exp

(
ατX ′iy − α2τ2‖Xi‖2/2

)∑p
i=1 exp

(
ατX ′iy − α2τ2‖Xi‖2/2

)
and this quantity is maximal if A is the set of indices i with the largest
values of X ′iy/α − τ‖Xi‖2/2. As shown in Lemma 5.1, |A| ≤ 2/ε, which
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gives

(A.37) Pπ
(
‖β̂ − β‖2 ≤ (1− ε/2)α2τ2

)
≤ Pπ

(
X ′Iy/α− τ‖XI‖2/2 is at least the d2/εeth largest

)
.

We complete the proof by showing that the probability in the right-hand
side of (A.37) is negligible uniformly over all estimators β̂ as p→∞. By the
independence between I and X, z, we can assume I = 1 while evaluating
this probability. With this in mind, we aim to show that there are sufficiently
many i’s such that

X ′iy/α−
τ

2
‖Xi‖2−X ′1y/α+

τ

2
‖X1‖2 = X ′i (z/α+ τX1)−τ

2
‖Xi‖2−X ′1z/α−

τ

2
‖X1‖2

is positive. Since

X ′1z/α+
τ

2
‖X1‖2 = OP(1/α) +

τ

2

(
1 +OP(1/

√
n)
)
,

it suffices to show that
(A.38)

#

{
2 ≤ i ≤ p : X ′i (z/α+ τX1)− τ

2
‖Xi‖2 >

C1

α
+
τ

2
+
C2τ√
n

}
≤ d2/εe − 1

holds with vanishing probability for all positive constants C1, C2. By the
independence between Xi and z/α + τX1, we can replace z/α + τX1 by
(‖z/α+ τX1‖, 0, . . . , 0) in (A.38). That is,

X ′i (z/α+ τX1)− τ

2
‖Xi‖2

d
= ‖z/α+ τX1‖Xi,1 −

τ

2
X2
i,1 −

τ

2
‖Xi,−1‖2,

where Xi,−1 ∈ Rn−1 is Xi without the first entry. To this end, we point out
that the following three events all happen with probability tending to one:

(A.39)

#{2 ≤ i ≤ p : ‖Xi,−1‖ ≤ 1}/p→ 1/2,

max
i
X2
i,1 ≤

2 log p

n
,

‖z/α+ τX1‖ ≥
(√

n−
√

log p
)
/α.

Making use of this and (A.38), we only need to show that

N , #

{
2 ≤ i ≤ 0.49p :

1

α

(
1−

√
(log p)/n

)√
nXi,1 >

τ log p

n
+
τ

2
+
C1

α
+
τ

2
+
C2τ√
n

}
#

{
2 ≤ i ≤ 0.49p :

1

α

(
1−

√
(log p)/n

)√
nXi,1 > τ +

τ log p

n
+
C1

α
+
C2τ√
n

}
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obeys

(A.40) N ≤ d2/εe − 1

with vanishing probability. The first line of (A.39) shows that there are at
least 0.49pmany i’s such that ‖Xi,−1‖ ≤ 1 and we assume they correspond to
indices 2 ≤ i ≤ 0.49p without loss of generality. (Note that N is independent
of all Xi,−1’s.) Observe that

τ ′ :=
τ + τ(log p)/n+ C1/α+ C2τ/

√
n(

1−
√

(log p)/n
)
/α

= α

(
1 + 2

√
log p

n

)
τ +O(1)

for sufficiently large p (to ensure (log p)/n is small). Hence, plugging the
specific choice of τ and using α ≤ 1, we obtain

τ ′ ≤
(

1 + 2
√

(log p)/n
)
τ +O(1) ≤

√
2 log p− log

√
2 log p+O(1),

which reveals that
√

2 log(0.49p) − τ ′ =
√

2 log p − τ ′ + o(1) → ∞. Since√
nXn,i are i.i.d. N (0, 1), Lemma A.13 validates (A.40).

Proof of Corollary 1.5. Let c > 0 be a sufficiently small constant
to be determined later. It is sufficient to prove the claim with p replaced
by a possibly smaller value given by p? := min{bcnc, p} (if we knew that
βi = 0 for p? + 1 ≤ i ≤ p, the loss of any estimator Xβ̂ would not increase
after projecting onto the linear space spanned by the first p? columns).
Hereafter, we assume X ∈ Rn×p? and β ∈ Rp? . Observe that p = O(n)
implies p = O(p?) and, therefore,

(A.41) log(p?/k) ∼ log(p/k).

In particular, k/p? → 0 and n/ log(p?/k) → ∞. This suggests that we can
apply Theorem 5.4 to our problem, obtaining

inf
β̂

sup
‖β‖0≤k

P

(
‖β̂ − β‖2

2k log(p?/k)
> 1− ε′

)
→ 1.

for every constant ε′ > 0. Because of (A.41), we also have

(A.42) inf
β̂

sup
‖β‖0≤k

P

(
‖β̂ − β‖2

2k log(p/k)
> 1− ε′

)
→ 1

for any ε′ > 0.



SUPPLEMENT 23

Since p?/n ≤ c ≤ 1, the smallest singular value of the Gaussian random
matrix X is at least 1 −

√
c + oP(1) (see, for example, [5]). This result,

together with (A.42), yields

inf
β̂

sup
‖β‖0≤k

P

(
‖Xβ̂ −Xβ‖2

2k log(p/k)
> (1−

√
c)2(1− ε′)

)
→ 1

for each ε′ > 0. Finally, choose c and ε′ sufficiently small such that (1 −√
c)2(1− ε′) > 1− ε.
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