False Discovery Rate Control in High-dimensional Linear Regression

Weijie Su University of Pennsylvania

Sparse high-dimensional linear regression

- Often p > n
- $\beta_j \neq 0$ means the *j*th variable is relevant and true
- Most of the coordinates of β are zero or close to zero

Model selection

$$oldsymbol{y} = oldsymbol{X} oldsymbol{eta} + oldsymbol{z} \ n imes p \ n imes p \ n imes 1$$

- Interested in identifying which $\beta_j \neq 0$
- Context of multiple testing

$$H_j: \beta_j = 0 \quad j = 1, \dots, p$$

• False discovery rate (FDR) control [Benjamini and Hochberg '95]

$$FDR \triangleq \mathbb{E}\left[\frac{\#\mathsf{false discoveries}}{\#\mathsf{discoveries}}\right] \le q$$

• #discoveries = # $\{j : \widehat{\beta}_j \neq 0\}$, #false discoveries = # $\{j : \widehat{\beta}_j \neq 0, \beta_j = 0\}$

Reproducibility

An existing procedure: Lasso

$$\min_{\boldsymbol{b}} \ \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|_2^2 \ + \ \underbrace{\lambda \|\boldsymbol{b}\|_1}_{\ell_1 \text{ norm}}$$

[Tibshirani '96]

An existing procedure: Lasso

$$\min_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|_2^2 + \underbrace{\boldsymbol{\lambda} \|\boldsymbol{b}\|_1}_{\ell_1 \text{ norm}}$$

[Tibshirani '96]

A numerical example

•
$$q = 0.1, n = p = 5000$$
. Nonzero $\beta_j = \sqrt{2 \log p} \approx 4.13$ and $\sigma^2 = 1$.

A new procedure: SLOPE

$$\min_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|_{2}^{2} + \underbrace{\lambda_{1}|b|_{(1)} + \dots + \lambda_{p}|b|_{(p)}}_{\text{sorted } \ell_{1} \text{ norm}}$$

[S. and Candès '16 (*Ann. Stat.*); Bogdan, Berg, Sabatti, S., and Candès '15 (*Ann. Appl. Stat.*)]

A numerical example

• q = 0.1, n = p = 5000. Nonzero $\beta_j = \sqrt{2\log p} \approx 4.13$ and $\sigma^2 = 1$

Outline

1. Deriving SLOPE with adaptive threshold

- Inspiration from BH
- Fast algorithm

2. FDR control

- Exact in orthogonal design
- Reasonable in general design

3. Estimation properties

- Minimax over sparse signals
- Cross-validation?

Bonferroni

$$\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{\beta}, \boldsymbol{I}_p).$$
 $H_j: \beta_j = 0 \text{ for } j = 1, \dots, p$

• Draw fixed threshold $\lambda^{\text{Bonf}} \triangleq \Phi^{-1}(1 - q/2p)$ (Φ is cdf of standard normal distribution)

• Reject
$$H_j$$
 if $|y_j| \ge \lambda^{\text{Bonf}}$

 Control familywise error rate (probability of making one or more false discoveries)

$$\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{\beta}, \boldsymbol{I}_p).$$
 $H_j: \beta_j = 0$ for $j = 1, \dots, p$

• Sort
$$|y|_{(1)} \ge \cdots \ge |y|_{(p)}$$

$$\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{\beta}, \boldsymbol{I}_p).$$
 $H_j: \beta_j = 0$ for $j = 1, \dots, p$

• Sort
$$|y|_{(1)} \ge \cdots \ge |y|_{(p)}$$

► Draw rank-dependent
threshold
$$\lambda_j^{\text{BH}} \triangleq \Phi^{-1}(1 - qj/2p)$$

$$\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{\beta}, \boldsymbol{I}_p).$$
 $H_j : \beta_j = 0$ for $j = 1, \dots, p$

$$\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{\beta}, \boldsymbol{I}_p).$$
 $H_j : \beta_j = 0$ for $j = 1, \dots, p$

$$\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{\beta}, \boldsymbol{I}_p).$$
 $H_j : \beta_j = 0$ for $j = 1, \dots, p$

• Sort
$$|y|_{(1)} \ge \cdots \ge |y|_{(p)}$$

► Draw rank-dependent threshold
$$\lambda_j^{\text{BH}} \triangleq \Phi^{-1}(1 - qj/2p)$$

- Under independence $FDR \leq q$

Bonferroni versus BH

Bonferroni versus BH

BH is adaptive

BH is adaptive

Effective cutoff is adaptive to strength of signals

How to Incorporate This Adaptivity into Linear Regression?

Rank-dependent penalization

 $\boldsymbol{y} = \boldsymbol{\beta} + \boldsymbol{z}.$ $x_+ = \max\{x, 0\}$

Bonferroni-style strategy: Lasso

$$\min_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_2^2 + \lambda |b_1| + \dots + \lambda |b_p|$$
$$\widehat{\beta}_j = \operatorname{sgn}(y_j) \cdot (|y_j| - \lambda)_+$$

Rank-dependent penalization

 $\boldsymbol{y} = \boldsymbol{\beta} + \boldsymbol{z}.$ $x_+ = \max\{x, 0\}$

Bonferroni-style strategy: Lasso

$$\min_{\boldsymbol{b}} \ \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_2^2 + \lambda |b_1| + \dots + \lambda |b_p|$$

•
$$\widehat{\beta}_j = \operatorname{sgn}(y_j) \cdot (|y_j| - \lambda)_+$$

BH-style strategy

$$\min_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \underbrace{\lambda_{1} |b|_{(1)} + \lambda_{2} |b|_{(2)} + \dots + \lambda_{p} |b|_{(p)}}_{\text{symmetric in } \boldsymbol{b}}$$

- $\lambda_1 \geq \cdots \geq \lambda_p \geq 0$
- $|b|_{(1)} \geq \cdots \geq |b|_{(p)}$: order statistics of |b|
- If $|y_1| \gg \cdots \gg |y_p|$, then $\widehat{\beta}_j = \operatorname{sgn}(y_j) \cdot (|y_j| \lambda_j)_+$

Rank-dependent penalization

 $\boldsymbol{y} = \boldsymbol{\beta} + \boldsymbol{z}.$ $x_+ = \max\{x, 0\}$

Bonferroni-style strategy: Lasso

$$\min_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_2^2 + \lambda |b_1| + \dots + \lambda |b_p|$$

•
$$\widehat{\beta}_j = \operatorname{sgn}(y_j) \cdot (|y_j| - \lambda)_+$$

BH-style strategy

$$\min_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \underbrace{\lambda_{1} |b|_{(1)} + \lambda_{2} |b|_{(2)} + \dots + \lambda_{p} |b|_{(p)}}_{\text{symmetric in } \boldsymbol{b}}$$

- $\lambda_1 \geq \cdots \geq \lambda_p \geq 0$
- $|b|_{(1)} \geq \cdots \geq |b|_{(p)}$: order statistics of |b|
- If $|y_1| \gg \cdots \gg |y_p|$, then $\widehat{\beta}_j = \operatorname{sgn}(y_j) \cdot (|y_j| \lambda_j)_+$

Effective threshold is adaptive

$$\min_{\boldsymbol{b}} \ \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_2^2 + \lambda_1 |b|_{(1)} + \dots + \lambda_p |b|_{(p)}, \quad \lambda_j = \lambda_j^{\mathsf{BH}} \equiv \Phi^{-1} (1 - qj/2p)$$

Effective threshold is adaptive

$$\min_{\boldsymbol{b}} \ \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \lambda_{1} |b|_{(1)} + \dots + \lambda_{p} |b|_{(p)}, \quad \lambda_{j} = \lambda_{j}^{\mathsf{BH}} \equiv \Phi^{-1} (1 - qj/2p)$$

Effective threshold is adaptive

$$\min_{\boldsymbol{b}} \ \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_2^2 + \lambda_1 |b|_{(1)} + \dots + \lambda_p |b|_{(p)}, \quad \lambda_j = \lambda_j^{\mathsf{BH}} \equiv \Phi^{-1}(1 - qj/2p)$$

 $y = \beta + z$

SLOPE: Sorted ℓ -One Penalized Estimation

$$\min_{\bm{b}} \ \frac{1}{2} \|\bm{y} - \bm{b}\|_2^2 + \lambda_1 |b|_{(1)} + \lambda_2 |b|_{(2)} + \dots + \lambda_p |b|_{(p)}$$

 $y = X\beta + z$

SLOPE: Sorted ℓ -One Penalized Estimation

$$\min_{\bm{b}} \ \frac{1}{2} \|\bm{y} - \bm{X}\bm{b}\|_2^2 + \lambda_1 |b|_{(1)} + \lambda_2 |b|_{(2)} + \dots + \lambda_p |b|_{(p)}$$

 $y = X\beta + z$

SLOPE: Sorted ℓ -One Penalized Estimation

$$\min_{\bm{b}} \ \frac{1}{2} \|\bm{y} - \bm{X}\bm{b}\|_2^2 + \lambda_1 |b|_{(1)} + \lambda_2 |b|_{(2)} + \dots + \lambda_p |b|_{(p)}$$

•
$$\lambda_1 \geq \cdots \geq \lambda_p \geq 0$$
 given by $\lambda_j^{BH} \equiv \Phi^{-1}(1 - qj/2p)$ or close

•
$$|b|_{(1)} \ge \cdots \ge |b|_{(p)}$$
: order statistics of $|b|$

• Less penalization for smaller coefficients

 $y = X\beta + z$

SLOPE: Sorted ℓ -One Penalized Estimation

$$\min_{\boldsymbol{b}} \ \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|_2^2 + J_{\boldsymbol{\lambda}}(\boldsymbol{b})$$

•
$$\lambda_1 \geq \cdots \geq \lambda_p \geq 0$$
 given by $\lambda_j^{BH} \equiv \Phi^{-1}(1 - qj/2p)$ or close

•
$$|b|_{(1)} \geq \cdots \geq |b|_{(p)}$$
: order statistics of $|b|$

- Less penalization for smaller coefficients
- $J_{\lambda}(b) \triangleq \lambda_1 |b|_{(1)} + \dots + \lambda_p |b|_{(p)}$ is (sorted ℓ_1) norm, so is convex

•
$$\lambda_1 = \cdots = \lambda_p$$
, then ℓ_1 norm

•
$$\lambda_2 = \cdots = \lambda_p = 0$$
, then ℓ_∞ norm

Level curves $\lambda_1 = 2, \lambda_2 = 1$

How to Solve SLOPE?

SLOPE as convex optimization

• Proximal gradient descent: O(1/k)

SLOPE as convex optimization

- Proximal gradient descent: O(1/k)
- Nesterov's accelerated schemes: $O(1/k^2)$

[Nesterov '83; Beck and Teboulle '09; Nesterov '13]

Empirical convergence

Figure: Solving SLOPE under 1000×10000 Gaussian design

Empirical convergence

Figure: Solving SLOPE under 1000×10000 Gaussian design

Improve Nesterov's scheme by restarting

- Nesterov's scheme is damping with decaying friction
- Suggest a new restarting scheme

[S., Boyd, and Candès '16 (JMLR)]
Improve Nesterov's scheme by restarting

- Nesterov's scheme is *damping with decaying friction*
- Suggest a new restarting scheme

Theorem (S., Boyd, and Candès)

If objective function is strongly convex and smooth, then restarting Nesterov's scheme has exponential convergence

[S., Boyd, and Candès '16 (JMLR)]

Empirical convergence

Figure: Solving SLOPE under 1000×10000 Gaussian design

Outline

1. Deriving SLOPE with adaptive threshold

- Inspiration from BH
- Fast algorithm

2. FDR control

- Exact in orthogonal design
- Reasonable in general design

3. Estimation properties

- Minimax over sparse signals
- Cross-validation?

Connection with BH

SLOPE under $\boldsymbol{X} = \boldsymbol{I}_p$ with $\boldsymbol{\lambda} = \boldsymbol{\lambda}^{\mathsf{BH}}(q)$

 $R_{\text{step-down}} \leq R_{\text{SLOPE}} \leq R_{\text{step-up}}, \quad R_{\text{SLOPE}} = \#\{j: \widehat{\beta}_{\text{SLOPE}}(j) \neq 0\}$

Connection with BH

```
SLOPE under \boldsymbol{X} = \boldsymbol{I}_p with \boldsymbol{\lambda} = \boldsymbol{\lambda}^{\mathsf{BH}}(q)
```


Provable FDR control of SLOPE

$$\mathsf{FDR} \equiv \mathbb{E}\left[\frac{\#\mathsf{false discoveries}}{\#\mathsf{discoveries}}\right] \le \frac{qp_0}{p} \le q$$

 $p_0 \triangleq \# \{ 1 \le j \le p : \beta_j = 0 \}$ is number of true nulls

FDR control in general designs

Adjust weights λ based on BH cutoffs

- Variance inflation
- $\bullet \ \ \, \lambda_j = (1+\omega_j)\lambda_j^{\rm BH} \text{, } \omega_j \geq 0$
- Active research area

Empirical FDR Control

FDR control in Gaussian design

Figure: Strong signals have nonzero coefficients set to $5\sqrt{2\log p}$, $\sqrt{2\log p}$ for weak signals and variance $\sigma^2 = 1$. Average over 500 replicates

SLOPE with unknown variance

Figure: SLOPE w/ or w/o knowing $\sigma^2 = 1$. Nominal level q = 0.1 and n = p = 5000. Nonzero $\beta_j = \sqrt{2 \log p} \approx 4.13$. Over 500 replicates

26/45

Variability of false discovery proportion (FDP)

$$FDP \triangleq \frac{\# false \ discoveries}{\# discoveries}$$

- FDP is realization of FDR
- Low variability of FDP is appreciated

Multiple testing in correlated noise

 $oldsymbol{y} \sim \mathcal{N}(oldsymbol{eta}, oldsymbol{\Sigma})$. Suppose $oldsymbol{\Sigma}$ is known

- BH: apply to \boldsymbol{y}
- SLOPE can incorporate Σ :

$$\underbrace{\sum_{\mathsf{new}}^{-1/2} oldsymbol{y}}_{\mathsf{new}} = \underbrace{\sum_{oldsymbol{x}}^{-1/2}}_{oldsymbol{X}} oldsymbol{eta} + oldsymbol{z}, \quad oldsymbol{z} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I}_p)$$

Multiple testing in correlated noise

 $oldsymbol{y} \sim \mathcal{N}(oldsymbol{eta}, oldsymbol{\Sigma})$. Suppose $oldsymbol{\Sigma}$ is known

- BH: apply to y
- SLOPE can incorporate Σ :

$$\underbrace{\sum_{\mathsf{new}}^{-1/2} \boldsymbol{y}}_{\mathsf{new}} = \underbrace{\sum_{\boldsymbol{X}}^{-1/2}}_{\boldsymbol{X}} \boldsymbol{eta} + \boldsymbol{z}, \quad \boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_p)$$

Setting

• q = 0.1, p = 1000, s = 50 and 500 replicates

•
$$\Sigma_{ij} = \begin{cases} 1 & i = j \\ 0.5 & i \neq j \end{cases}$$

• $\beta_j = \begin{cases} \sqrt{2\log p} = 3.717 & 1 \le j \le s \\ 0 & s < j \le p \end{cases}$

Comparison with BH

Comparison with empirical Bayes approach

A real-data example of $oldsymbol{X}$

- 1000 individuals from admixture of the African-American and European populations
- 892 markers distributed over all chromosomes
- $X_{ij} \in \{0, 1, 2\}$ is the number of copies of ref. allele at marker j for individual i
- Simulate $y = X\beta + z$ with nonzero $\beta_j = \sqrt{2\log p} = 3.69$ and noise variance $\sigma^2 = 1$

Data source: The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. *Nature*, 449:851–862, 2007

Comparison with BHs

Figure: q = 0.1. Over 500 replicates

- Marginal (apply BH to univariate regression): fail to control FDR
- Full (apply BH to LS estimate): low power

Outline

1. Deriving SLOPE with adaptive threshold

- Inspiration from BH
- Fast algorithm

2. FDR control

- Exact in orthogonal design
- Reasonable in general design

3. Estimation properties

- Minimax over sparse signals
- Cross-validation?

Balance between bias and variance

Threshold	Control	Bias	Variance	MSE
High	FWER	High	Low	High
Low	No	Low	High	High
Adaptive	FDR	Low	Low	Low?

- $MSE = Bias^2 + Variance$
- FDR-thresholding [Abramovich, Benjamini, Donoho, and Johnstone '05]

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z} \qquad X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n) \qquad \boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$$

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}$$
 $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$ $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$

▶ Sparsity class $\ell_0(s) \triangleq \{\beta : \|\beta\|_0 \le s\}$ ($\|\cdot\|_0$ denotes #nonzero entries)

▶ Weights $(1 + \epsilon/3)\lambda^{\text{BH}}(q)$ for any fixed $0 < \epsilon, q < 1$

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}$$
 $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$ $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$

- ▶ Sparsity class $\ell_0(s) \triangleq \{\beta : \|\beta\|_0 \le s\}$ ($\|\cdot\|_0$ denotes #nonzero entries)
- ▶ Weights $(1 + \epsilon/3) \lambda^{\text{BH}}(q)$ for any fixed $0 < \epsilon, q < 1$

Theorem (S. and Candès)

If $s/p \to 0$ and $(s \log p)/n \to 0$, then

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}$$
 $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$ $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$

- ▶ Sparsity class $\ell_0(s) \triangleq \{\beta : \|\beta\|_0 \le s\}$ ($\|\cdot\|_0$ denotes #nonzero entries)
- ▶ Weights $(1 + \epsilon/3)\lambda^{\text{BH}}(q)$ for any fixed $0 < \epsilon, q < 1$

Theorem (S. and Candès)

If $s/p \to 0$ and $(s \log p)/n \to 0$, then

•
$$\inf_{\widehat{\beta}} \sup_{\beta \in \ell_0(s)} \mathbb{P}\left(\|\widehat{\beta} - \beta\|_2^2 > (1 - \epsilon) \cdot R(s) \right) \longrightarrow 1$$
 (lower bound)

Here $R(s) = 2s \log(p/s)$

• Minimax (probabilistic) risk is at least $(1 - o(1)) \cdot R(s)$

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}$$
 $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$ $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$

▶ Sparsity class $\ell_0(s) \triangleq \{\beta : \|\beta\|_0 \le s\}$ ($\|\cdot\|_0$ denotes #nonzero entries)

▶ Weights $(1 + \epsilon/3)\lambda^{\text{BH}}(q)$ for any fixed $0 < \epsilon, q < 1$

Theorem (S. and Candès)

If $s/p \to 0$ and $(s\log p)/n \to 0$, then

•
$$\inf_{\widehat{\beta}} \sup_{\beta \in \ell_0(s)} \mathbb{P}\left(\|\widehat{\beta} - \beta\|_2^2 > (1 - \epsilon) \cdot R(s) \right) \longrightarrow 1$$
 (lower bound)

•
$$\sup_{\boldsymbol{\beta} \in \ell_0(s)} \mathbb{P}\left(\| \widehat{\boldsymbol{\beta}}_{\mathsf{SLOPE}} - \boldsymbol{\beta} \|_2^2 > (1 + \epsilon) \cdot R(s) \right) \longrightarrow 0$$
 (upper bound)

Here $R(s) = 2s \log(p/s)$

- Minimax (probabilistic) risk is at least $(1 o(1)) \cdot R(s)$
- SLOPE has worst case (probabilistic) risk at most $(1 + o(1)) \cdot R(s)$

$$\sup_{\boldsymbol{\beta} \in \ell_0(s)} \mathbb{P}\left(\| \widehat{\boldsymbol{\beta}}_{\mathsf{SLOPE}} - \boldsymbol{\beta} \|_2^2 > (1 + \epsilon) \cdot R(s) \right) \longrightarrow 0$$

Existing techniques in high-dimensional sparse regression are not applicable

$$\sup_{\boldsymbol{\beta} \in \ell_0(s)} \mathbb{P}\left(\| \widehat{\boldsymbol{\beta}}_{\mathsf{SLOPE}} - \boldsymbol{\beta} \|_2^2 > (1 + \epsilon) \cdot R(s) \right) \longrightarrow 0$$

Existing techniques in high-dimensional sparse regression are not applicable

- Asymptotically exact minimax
 - many techniques are not sharp

$$\sup_{\boldsymbol{\beta} \in \ell_0(s)} \mathbb{P}\left(\| \widehat{\boldsymbol{\beta}}_{\mathsf{SLOPE}} - \boldsymbol{\beta} \|_2^2 > (1 + \epsilon) \cdot R(s) \right) \longrightarrow 0$$

Existing techniques in high-dimensional sparse regression are not applicable

• Asymptotically exact minimax

many techniques are not sharp

- Sorted ℓ_1 norm is not decomposable
 - ----> KKT conditions are complicated

$$\sup_{\boldsymbol{\beta} \in \ell_0(s)} \mathbb{P}\left(\| \widehat{\boldsymbol{\beta}}_{\mathsf{SLOPE}} - \boldsymbol{\beta} \|_2^2 > (1 + \epsilon) \cdot R(s) \right) \longrightarrow 0$$

Existing techniques in high-dimensional sparse regression are not applicable

• Asymptotically exact minimax

many techniques are not sharp

- Sorted ℓ_1 norm is not decomposable
 - ----> KKT conditions are complicated
- False discoveries are allowed
 - solution support is unknown a priori

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}$$
 $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$ $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$

Theorem (two-line version)

If $s/p \to 0$ and $(s \log p)/n \to 0$, SLOPE with weights λ^{BH} achieves minimax risk $2s \log(p/s)$ over s-sparsity ball

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}$$
 $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$ $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$

Theorem (two-line version)

If $s/p \to 0$ and $(s \log p)/n \to 0$, SLOPE with weights λ^{BH} achieves minimax risk $2s \log(p/s)$ over s-sparsity ball

• Possibly
$$p \gg n$$
. e.g. $n = p^{0.75}, s = p^{0.5}$

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}$$
 $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$ $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$

Theorem (two-line version)

If $s/p \to 0$ and $(s \log p)/n \to 0$, SLOPE with weights λ^{BH} achieves minimax risk $2s \log(p/s)$ over s-sparsity ball

• Possibly
$$p \gg n$$
. e.g. $n = p^{0.75}, s = p^{0.5}$

• Lasso with $\lambda = (1 + o(1))\lambda_1^{\rm BH} \approx \sqrt{2\log p}$ has worst case risk $2s\log p$

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}$$
 $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$ $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$

Theorem (two-line version)

If $s/p \to 0$ and $(s \log p)/n \to 0$, SLOPE with weights λ^{BH} achieves minimax risk $2s \log(p/s)$ over *s*-sparsity ball

• Possibly
$$p \gg n$$
. e.g. $n = p^{0.75}, s = p^{0.5}$

- Lasso with $\lambda = (1 + o(1))\lambda_1^{BH} \approx \sqrt{2\log p}$ has worst case risk $2s\log p$
- Lasso is minimax with $\lambda = (1+o(1))\lambda_s^{\rm BH} \approx -\sqrt{2\log(p/s)}$

need to know sparsity!

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}$$
 $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$ $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$

Theorem (two-line version)

If $s/p \to 0$ and $(s \log p)/n \to 0$, SLOPE with weights λ^{BH} achieves minimax risk $2s \log(p/s)$ over *s*-sparsity ball

• Possibly
$$p \gg n$$
. e.g. $n = p^{0.75}, s = p^{0.5}$

- Lasso with $\lambda = (1 + o(1))\lambda_1^{BH} \approx \sqrt{2\log p}$ has worst case risk $2s\log p$
- Lasso is minimax with $\lambda = (1+o(1))\lambda_s^{\rm BH} \approx -\sqrt{2\log(p/s)}$

need to know sparsity!

Can Cross-Validation Adapt to Unknown Sparsity?

Comparison with a data-driven procedure

Lasso under identity design

SureShrink [Donoho and Johnstone '95]

- Select λ by minimizing $SURE(\lambda)$
- Cross-validation flavor

Comparison with a data-driven procedure

Comparison with a data-driven procedure

Connection with FDR thresholding

 $oldsymbol{y} \sim \mathcal{N}(oldsymbol{eta}, oldsymbol{I}_p)$

FDR-thresholding: perform BH and let

$$\widehat{\beta}_{\mathsf{FDR}}(j) = \begin{cases} y_j & \text{if } H_j : \beta_j = 0 \text{ is rejected} \\ 0 & \text{if } H_j : \beta_j = 0 \text{ is accepted} \end{cases}$$

SLOPE under orthogonal design
Soft-rule with adaptive cutoff
► $s/p \rightarrow 0$
▶ Use $\lambda^{BH}(q)$ with $0 < q < 1$
Minimax over <i>s</i> -sparsity ball

[Abramovich, Benjamini, Donoho, Johnstone '05]

Simple corollary of Gaussian design case

Connection with FDR thresholding

 $oldsymbol{y} \sim \mathcal{N}(oldsymbol{eta}, oldsymbol{I}_p)$

FDR-thresholding: perform BH and let

$$\widehat{\beta}_{\mathsf{FDR}}(j) = \begin{cases} y_j & \text{if } H_j : \beta_j = 0 \text{ is rejected} \\ 0 & \text{if } H_j : \beta_j = 0 \text{ is accepted} \end{cases}$$

FDR thresholding	SLOPE under orthogonal design
Hard-rule with adaptive cutoff	Soft-rule with adaptive cutoff
▶ $\log^5 p \le s \le p^{1-\delta}$, constant $\delta > 0$	► $s/p \rightarrow 0$
► $0 < q \le 1/2$	▶ Use $\lambda^{BH}(q)$ with $0 < q < 1$
Minimax over s-sparsity ball	Minimax over <i>s</i> -sparsity ball

[Abramovich, Benjamini, Donoho, Johnstone '05]

Only identity design matrix

Simple corollary of Gaussian design case

General design matrix

Connection with $\ell_0\text{-penalized}$ MLE

$$\min_{\boldsymbol{b}} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \operatorname{pen}(\|\boldsymbol{b}\|_{0}), \quad \operatorname{pen}(\|\boldsymbol{b}\|_{0}) = \sum_{j=1}^{\|\boldsymbol{b}\|_{0}} t_{j}^{2}$$

Constant	Adaptive
• Mallows' C_p and AIC: $t_j = \sqrt{2}$	$ t_j = \sqrt{2j\log\frac{p}{j} - 2(j-1)\log\frac{p}{j-1}} $
• BIC: $t_j = \sqrt{\log n}$	$ t_j = \sqrt{2\log(p/j)} $
• RIC: $t_j = \sqrt{2 \log p}$	• $t_j = \lambda_j^{\text{BH}}$ (FDR thresholding)

• All three adaptive t_j are equivalent for small j

[Foster and George '94; Abramovich and Benjamini '96; Tibshirani and Knight '99; Foster and Stine '99; Birgé and Massart '01; Abramovich et al '05; Wu and Zhou '13] (highly incomplete)

Connection with $\ell_0\text{-}\text{penalized}$ MLE

$$\min_{\boldsymbol{b}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|_{2}^{2} + \operatorname{pen}(\|\boldsymbol{b}\|_{0}), \quad \operatorname{pen}(\|\boldsymbol{b}\|_{0}) = \sum_{j=1}^{\|\boldsymbol{b}\|_{0}} t_{j}^{2}$$

Constant

- Mallows' C_p and AIC: $t_j = \sqrt{2}$
- BIC: $t_j = \sqrt{\log n}$
- RIC: $t_j = \sqrt{2\log p}$

Adaptive

•
$$t_j = \sqrt{2j\log\frac{p}{j} - 2(j-1)\log\frac{p}{j-1}}$$

•
$$t_j = \sqrt{2\log(p/j)}$$

•
$$t_j = \lambda_j^{BH}$$
 (FDR thresholding)

- All three adaptive t_j are equivalent for small j
- Computationally intractable for general design matrix $oldsymbol{X}$

[Foster and George '94; Abramovich and Benjamini '96; Tibshirani and Knight '99; Foster and Stine '99; Birgé and Massart '01; Abramovich et al '05; Wu and Zhou '13] (highly incomplete) Concluding Remarks

Extensions based on sorted ℓ_1 norm

Recent work

- Group SLOPE to account for strong correlations [Gossmann, Cao, and Wang '15; Brzyski, Gossman, S., and Bogdan '16]
- Square root SLOPE [Stucky and van de Geer '15]
- Sorted ℓ_1 Dantzig selector [Lee, Brzyski, and Bogdan '15]
- SLOPE with permissible region constraint to reconstruct fluorescence targets [He, Dong, Yu, Guo, and Hou '15]

Extensions based on sorted ℓ_1 norm

Recent work

- Group SLOPE to account for strong correlations [Gossmann, Cao, and Wang '15; Brzyski, Gossman, S., and Bogdan '16]
- Square root SLOPE [Stucky and van de Geer '15]
- Sorted ℓ_1 Dantzig selector [Lee, Brzyski, and Bogdan '15]
- SLOPE with permissible region constraint to reconstruct fluorescence targets [He, Dong, Yu, Guo, and Hou '15]

Future extensions

- Graphical SLOPE?
- Sorted ℓ_1 regularized logistic regression?
- Other sorted ℓ_1 regularized GLM?
- Sorted nuclear norm in matrix completion?

Summary

• FDR control

- Goal
- Controlled at reasonable level

• Adaptive threshold

- Sorted ℓ_1 norm
- High for weak signals and low for strong

Good estimation

- Bonus
- Minimax under Gaussian designs

Summary

• FDR control: balance true and false discoveries

- Goal
- Controlled at reasonable level
- Adaptive threshold: balance signal and noise
 - Sorted ℓ_1 norm
 - High for weak signals and low for strong
- **Good estimation**: balance bias and variance
 - Bonus
 - Minimax under Gaussian designs

Summary

• FDR control: balance true and false discoveries

- Goal
- Controlled at reasonable level
- Adaptive threshold: balance signal and noise
 - Sorted ℓ_1 norm
 - High for weak signals and low for strong
- **Good estimation**: balance bias and variance
 - Bonus
 - Minimax under Gaussian designs

Thank You!

References

R package: https://cran.r-project.org/web/packages/SLOPE

- SLOPE is adaptive to unknown sparsity and asymptotically minimax. S. and Candès '16, Annals of Statistics
- SLOPE adaptive variable selection via convex optimization. Bogdan, Berg, Sabatti, S., and Candès '15, Annals of Applied Statistics
- A differential equation for modeling Nesterov's accelerated gradient method: theory and insights. S., Boyd, and Candès '16, Journal of Machine Learning Research
- Approximating Stein's unbiased risk estimate by drifted Brownian motion. S. '16, coming soon
- Group SLOPE adaptive selection of groups of predictors. Brzyski, S., and Bogdan '15, arXiv paper

Backup Slides

Compressed sensing with sorted ℓ_1 norm

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} \qquad X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n) \qquad \|\boldsymbol{\beta}\|_0 = s \ll p$$

Sorted ℓ_1 compressed sensing

min
$$\lambda_1 |b|_{(1)} + \cdots + \lambda_p |b|_{(p)}$$

s.t. $\boldsymbol{X}\boldsymbol{b} = \boldsymbol{y}$

- If $\lambda_1 = \cdots = \lambda_p$, $2s \log(p/s)$ measurements are necessary and sufficient
- If $\lambda = \lambda^{BH}$, $2s \log(p/s)$ measurements are necessary and sufficient
- Tool: statistical dimension [Amelunxen, Lotz, McCoy, and Tropp '14]
- Question: other optimal weights?

Posterior mean for exponential prior

$$\boldsymbol{y} = \boldsymbol{\beta} + \boldsymbol{z}, \quad \beta_j \stackrel{\text{iid}}{\sim} \operatorname{Exp}(1)$$

- MAP: argmin $\frac{1}{2} \| \boldsymbol{y} \boldsymbol{b} \|_2^2 + \| \boldsymbol{b} \|_1$ subject to $\boldsymbol{b}_j \ge 0$
- Posterior mean: $\mathbb{E}(\beta_j|y_j)$

Posterior mean for exponential prior

shrinkage =
$$y_j - \mathbb{E}(\beta_j | y_j)$$

Model misspecification

Northern Finland Birth Cohort

Goal

• Identify variants that impact fasting blood high-density lipoprotein (HDL) levels

Northern Finland Birth Cohort

Goal

 Identify variants that impact fasting blood high-density lipoprotein (HDL) levels

Dataset

- 6121 individuals from northern Finland
- 1878 genetic variants in regions having documented association with lipid levels
- After perform filtering, dataset dimensions reduced to (n,p)=(5375,777)

Northern Finland Birth Cohort

Goal

 Identify variants that impact fasting blood high-density lipoprotein (HDL) levels

Dataset

- 6121 individuals from northern Finland
- 1878 genetic variants in regions having documented association with lipid levels
- After perform filtering, dataset dimensions reduced to (n,p)=(5375,777)

Reference

• Service et al reported 14 variants as having effect on HDL ["Re-sequencing expands our understanding of the phenotypic impact of variants at GWAS loci", Service et al '14]

Results

]	SLOPE	FullBH	UnivBH	BIC	LassoBonf	LassoCV
	13	7	11	13	10	14
rs2303790	+	+	+	+	_	+
rs5883	+	+		+	+	+
rs794676	+		+	+	+	+
rs2575875	+	_	+	+	+	+
rs2066715	+	_	+	+	+	+
rs611229	+	_	+	+	+	+
rs12314392	+	—	_	+	_	+
rs11988	+	_	+		_	+
rs509360	_	_		+	_	+
	14	11	15	17	12	108
v_c9_107555091	+	_	+	+	+	+
rs5801	+	_	+	+	_	+
rs62136410	_		+	+	_	+
v_c16_57095439	+	_	_		—	+
rs149470424	_			+	_	+
v_c2_44223117	_			+	_	+
v_c1_109817524	_	_	_	+	_	+
rs5802	_		+			
Total	27	18	26	30	22	122

Figure: 17 variants where there is disagreement between all methods, after eliminating 90 variants selected only by 10-fold cross-validation Lasso. We use q = 0.05

FDR control

Figure: Simulate nonzero $\beta_j = \sqrt{2 \log p} = 3.65$ and $\sigma^2 = 1$. Over 500 replicates

Adaptive Lasso [Zou '06]

FDR

Power

• q = 0.1, n = p = 5000. Nonzero $\beta_j = \sqrt{2 \log p} \approx 4.13$ and $\sigma^2 = 1$

Comparison with Knockoffs

Figure: q = 0.1, p = 500, n = 1000. Nonzero $\beta_j = 1.2\sqrt{2\log p} \approx 4.23$ and $\sigma^2 = 1$. Over 50 replicates

False discoveries occur (very) early on Lasso path

Figure: n/p = 0.5, s/p = 0.15

[S., Bogdan, and Candès '15]

Why are BH cutoffs λ^{BH} optimal also for estimation?

Why are BH cutoffs λ^{BH} optimal also for estimation?

1. Dominate noise in the global null $\beta = 0$; 2. Introduce less bias

Why are BH cutoffs λ^{BH} optimal also for estimation?

1. Dominate noise in the global null $\beta = 0$; 2. Introduce less bias

• Ordered $|m{z}|$ are rank-dependent, $m{z} \sim \mathcal{N}(m{0}, m{I}_p)$

Why are BH cutoffs λ^{BH} optimal also for estimation?

1. Dominate noise in the global null $\beta = 0$; 2. Introduce less bias

- Ordered $|m{z}|$ are rank-dependent, $m{z} \sim \mathcal{N}(m{0}, m{I}_p)$
- BH cutoffs are rank-dependent and just a bit larger

Proximal gradient algorithm for SLOPE

$$\min_{\boldsymbol{b}} \quad \underbrace{\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|_2^2}_{\text{smooth}} + \underbrace{J_{\boldsymbol{\lambda}}(\boldsymbol{b})}_{\text{nonsmooth}}$$

Algorithm 1: Proximal gradient descent

Require: $b^0 \in \mathbb{R}^p$, step sizes t_k 1: for k = 0, 1, ... do 2: $b^{k+1} = \operatorname{prox}_{t_k \lambda} (b^k - t_k X'(X b^k - y))$ 3: end for

Proximal gradient algorithm for SLOPE

$$\min_{\boldsymbol{b}} \quad \underbrace{\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|_2^2}_{\text{smooth}} + \underbrace{J_{\boldsymbol{\lambda}}(\boldsymbol{b})}_{\text{nonsmooth}}$$

Algorithm 1: Proximal gradient descent

Require: $b^0 \in \mathbb{R}^p$, step sizes t_k 1: for k = 0, 1, ... do 2: $b^{k+1} = \operatorname{prox}_{t_k \lambda} (b^k - t_k X'(Xb^k - y))$ 3: end for

• O(1/k) convergence rate

Accelerated proximal gradient algorithm for SLOPE

$$\min_{\boldsymbol{b}} \quad \underbrace{\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|_2^2}_{\text{smooth}} + \underbrace{J_{\boldsymbol{\lambda}}(\boldsymbol{b})}_{\text{nonsmooth}}$$

Algorithm 2: Accelerated proximal gradient descent

Require: $b^0 \in \mathbb{R}^p$, set $a^0 = b^0$, $\theta_0 = 1$, and step sizes t_k 1: for k = 0, 1, ... do 2: $b^{k+1} = \operatorname{prox}_{t_k \lambda} (a^k - t_k X'(Xa^k - y))$ 3: $\theta_{k+1}^{-1} = \frac{1}{2}(1 + \sqrt{1 + 4/\theta_k^2})$ 4: $a^{k+1} = b^{k+1} + \underbrace{\theta_{k+1}(\theta_k^{-1} - 1)(b^{k+1} - b^k)}_{\text{momentum}}$ 5: end for momentum

Accelerated proximal gradient algorithm for SLOPE

$$\min_{\boldsymbol{b}} \quad \underbrace{\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|_2^2}_{\text{smooth}} + \underbrace{J_{\boldsymbol{\lambda}}(\boldsymbol{b})}_{\text{nonsmooth}}$$

Algorithm 2: Accelerated proximal gradient descent

Require: $\mathbf{b}^0 \in \mathbb{R}^p$, set $\mathbf{a}^0 = \mathbf{b}^0$, $\theta_0 = 1$, and step sizes t_k 1: for k = 0, 1, ... do 2: $\mathbf{b}^{k+1} = \operatorname{prox}_{t_k \lambda} (\mathbf{a}^k - t_k \mathbf{X}' (\mathbf{X} \mathbf{a}^k - \mathbf{y}))$ 3: $\theta_{k+1}^{-1} = \frac{1}{2} (1 + \sqrt{1 + 4/\theta_k^2})$ 4: $\mathbf{a}^{k+1} = \mathbf{b}^{k+1} + \underbrace{\theta_{k+1}(\theta_k^{-1} - 1)(\mathbf{b}^{k+1} - \mathbf{b}^k)}_{\text{momentum}}$ 5: end for

• $O(1/k^2)$ convergence rate

Accelerated proximal gradient algorithm for SLOPE

$$\min_{\boldsymbol{b}} \quad \underbrace{\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|_2^2}_{\text{smooth}} + \underbrace{J_{\boldsymbol{\lambda}}(\boldsymbol{b})}_{\text{nonsmooth}}$$

Algorithm 2: Accelerated proximal gradient descent

Require: $b^0 \in \mathbb{R}^p$, set $a^0 = b^0$, $\theta_0 = 1$, and step sizes t_k 1: for k = 0, 1, ... do 2: $b^{k+1} = \operatorname{prox}_{t_k \lambda} (a^k - t_k X'(Xa^k - y))$ 3: $\theta_{k+1}^{-1} = \frac{1}{2}(1 + \sqrt{1 + 4/\theta_k^2})$ 4: $a^{k+1} = b^{k+1} + \underbrace{\theta_{k+1}(\theta_k^{-1} - 1)(b^{k+1} - b^k)}_{\text{momentum}}$ 5: end for

- $O(1/k^2)$ convergence rate
- Prox operator: $\operatorname{prox}_{\lambda}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} \boldsymbol{b}\|_2^2 + J_{\lambda}(\boldsymbol{b})$

Compute the prox

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

Adapted from pool adjacent violators algorithm (PAVA), Kruskal ('64), Barlow, Bartholomew, Bremner, and Brunk ('72)

Compute the prox

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

Plot
$$\Delta oldsymbol{y} riangleq oldsymbol{y} - oldsymbol{\lambda}$$

Compute the prox

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

Detect increasing subsequences
$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

Detect increasing subsequences

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \operatorname{argmin}_{\boldsymbol{b}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{b}\|_{2}^{2} + \sum_{j=1}^{p} \lambda_{j} |b|_{(j)}$$

Comparison with Lasso under Gaussian design

- Lasso with $\lambda = (1 + o(1))\sqrt{2\log p}$ has worst case risk $2s\log p$
- SLOPE with $\lambda = (1 + o(1))\lambda^{BH}$ has worst case risk $2s \log(p/s)$

Figure: n=500, p=1000, nonzero $\beta_j=10\lambda_1^{\rm BH}, \sigma=1, q=0.05$

Related methods (some are very new)

- Lasso
- Selective inference on Lasso path (G'Sell et al, '15)
- Knockoffs (Barber and Candès, '15)

Accelerated gradient descent

f convex and ∇f Lipschitz

min $f(\boldsymbol{x})$

Gradient descent: $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - s \nabla f(\boldsymbol{x}_k)$

• $f(\boldsymbol{x}_k) - f^* \leq O(1/k)$

Nesterov's accelerated gradient descent ('83)

$$egin{aligned} oldsymbol{x}_k &= oldsymbol{y}_{k-1} - s
abla f(oldsymbol{y}_{k-1}) \ oldsymbol{y}_k &= oldsymbol{x}_k + rac{k-1}{k+2} (oldsymbol{x}_k - oldsymbol{x}_{k-1}) \end{aligned}$$

•
$$f(x_k) - f^* \le O(1/k^2)$$

• Generalize to $f(\boldsymbol{x}) + \lambda \|\boldsymbol{x}\|_1, f(\boldsymbol{x}) + J_{\boldsymbol{\lambda}}(\boldsymbol{x})$, etc

An ordinary differential equation

$$\ddot{X}(t) + \frac{3}{t}\dot{X}(t) + \nabla f(X(t)) = 0, \quad X(0) = x_0, \dot{X}(0) = 0$$

Figure: $f(\boldsymbol{x}) = 4x_1^2 + x_2^2$ starting from $\boldsymbol{x}_0 = (1,1)$

[S., Boyd, Candès '15]

$$egin{aligned} oldsymbol{x}_k &= oldsymbol{y}_{k-1} - s
abla f(oldsymbol{y}_{k-1}) \ oldsymbol{y}_k &= oldsymbol{x}_k + rac{k-1}{k+2} (oldsymbol{x}_k - oldsymbol{x}_{k-1}) \end{aligned}$$

$$\ddot{\boldsymbol{X}}(t) + \frac{3}{t}\dot{\boldsymbol{X}}(t) + \nabla f(\boldsymbol{X}(t)) = \boldsymbol{0}$$

$$\begin{aligned} \boldsymbol{x}_k &= \boldsymbol{y}_{k-1} - s \nabla f(\boldsymbol{y}_{k-1}) \\ \boldsymbol{y}_k &= \boldsymbol{x}_k + \frac{k-1}{k+2} (\boldsymbol{x}_k - \boldsymbol{x}_{k-1}) \end{aligned}$$

•

$$\ddot{\boldsymbol{X}}(t) + \frac{3}{t}\dot{\boldsymbol{X}}(t) + \nabla f(\boldsymbol{X}(t)) = \boldsymbol{0}$$

$$f(x_k) - f^* \le O(1/k^2)$$
 • $f(X(t)) - f^* \le O(1/t^2)$

$$egin{aligned} oldsymbol{x}_k &= oldsymbol{y}_{k-1} - s
abla f(oldsymbol{y}_{k-1}) \ oldsymbol{y}_k &= oldsymbol{x}_k + rac{k-1}{k+2} (oldsymbol{x}_k - oldsymbol{x}_{k-1}) \end{aligned}$$

•
$$f(x_k) - f^* \le O(1/k^2)$$

sophisticated proof

$$\ddot{\boldsymbol{X}}(t) + \frac{3}{t}\dot{\boldsymbol{X}}(t) + \nabla f(\boldsymbol{X}(t)) = \boldsymbol{0}$$

•
$$f(X(t)) - f^* \le O(1/t^2)$$

• Simple Lyapunov function

$$egin{aligned} oldsymbol{x}_k &= oldsymbol{y}_{k-1} - s
abla f(oldsymbol{y}_{k-1}) \ oldsymbol{y}_k &= oldsymbol{x}_k + rac{k-1}{k+2} (oldsymbol{x}_k - oldsymbol{x}_{k-1}) \end{aligned}$$

•
$$f(x_k) - f^* \le O(1/k^2)$$

- sophisticated proof
- k+2-(k-1)=3

$$\ddot{\boldsymbol{X}}(t) + \frac{3}{t}\dot{\boldsymbol{X}}(t) + \nabla f(\boldsymbol{X}(t)) = \boldsymbol{0}$$

•
$$f(X(t)) - f^* \le O(1/t^2)$$

• Simple Lyapunov function

• <mark>3</mark>/t

$$egin{aligned} oldsymbol{x}_k &= oldsymbol{y}_{k-1} - s
abla f(oldsymbol{y}_{k-1}) \ oldsymbol{y}_k &= oldsymbol{x}_k + rac{k-1}{k+2} (oldsymbol{x}_k - oldsymbol{x}_{k-1}) \end{aligned}$$

•
$$f(x_k) - f^* \le O(1/k^2)$$

- sophisticated proof
- k+2-(k-1)=3

$$\ddot{\boldsymbol{X}}(t) + \frac{3}{t}\dot{\boldsymbol{X}}(t) + \nabla f(\boldsymbol{X}(t)) = \boldsymbol{0}$$

•
$$f(X(t)) - f^* \le O(1/t^2)$$

• Simple Lyapunov function

• <mark>3</mark>/t

Theorem (S., Boyd, and Candès)

For any r > 0, replace (k-1)/(k+2) with (k-1)/(k+r-1), and 3/t with r/t

$$egin{aligned} oldsymbol{x}_k &= oldsymbol{y}_{k-1} - s
abla f(oldsymbol{y}_{k-1}) \ oldsymbol{y}_k &= oldsymbol{x}_k + rac{k-1}{k+2} (oldsymbol{x}_k - oldsymbol{x}_{k-1}) \end{aligned}$$

•
$$f(x_k) - f^* \le O(1/k^2)$$

- sophisticated proof
- k+2-(k-1)=3

$$\ddot{\boldsymbol{X}}(t) + \frac{3}{t}\dot{\boldsymbol{X}}(t) + \nabla f(\boldsymbol{X}(t)) = \boldsymbol{0}$$

•
$$f(X(t)) - f^* \le O(1/t^2)$$

• Simple Lyapunov function

• <mark>3</mark>/t

Theorem (S., Boyd, and Candès)

For any r > 0, replace (k-1)/(k+2) with (k-1)/(k+r-1), and 3/t with r/t

• If $r \ge 3$, quadratic convergence holds for both

$$egin{aligned} oldsymbol{x}_k &= oldsymbol{y}_{k-1} - s
abla f(oldsymbol{y}_{k-1}) \ oldsymbol{y}_k &= oldsymbol{x}_k + rac{k-1}{k+2} (oldsymbol{x}_k - oldsymbol{x}_{k-1}) \end{aligned}$$

•
$$f(x_k) - f^* \le O(1/k^2)$$

- sophisticated proof
- k+2-(k-1)=3

$$\ddot{\boldsymbol{X}}(t) + \frac{3}{t}\dot{\boldsymbol{X}}(t) + \nabla f(\boldsymbol{X}(t)) = \boldsymbol{0}$$

•
$$f(X(t)) - f^* \le O(1/t^2)$$

• Simple Lyapunov function

• <mark>3</mark>/t

Theorem (S., Boyd, and Candès)

For any r > 0, replace (k - 1)/(k + 2) with (k - 1)/(k + r - 1), and 3/t with r/t

- If $r \ge 3$, quadratic convergence holds for both
- If r < 3, counterexamples

Numerical examples

Choice of λ

• Variance inflation caused by shrinkage

$$\begin{split} \lambda_1 &= \sigma \lambda_1^{\rm BH} \\ \lambda_j &= \sigma \lambda_j^{\rm BH} \sqrt{1 + \frac{w_j}{\sigma^2} \sum_{i < j} \lambda_i^2}, \ j \geq 2 \end{split}$$

- $w_j = \frac{1}{j}\mathbb{E}||(X'_TX_T)^{-1}X'_TX_i||^2$. Monte Carlo simulations over all $T \subset \{1, \dots, p\}$ with |T| = k and $i \notin S$
- $\lambda_j > \sigma \lambda_j^{\text{BH}}$: more conservative procedure