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Deep learning



Elephant in the room, from a theoretical viewpoint…



The fundamental questions in deep learning

• Why don’t heavily parameterized neural networks overfit the 
data? 

• What is the effective number of parameters? 

• Why doesn’t backpropagation get stuck in poor local minima 
with low value of the loss function, yet bad test error?

Leo Breiman



A phenomenological approach for deep learning? 

Experiments/data Phenomenological 
model

Theory

Ideally, we want

• Big picture instead of complex details

• Intuitive, though may not be rigorous

• Guides future research



Examples of phenomenological models

• Simple, though not rigorous

• Offers a big picture 

• Guides future research

Tycho Brahe Johannes Kepler Isaac Newton

Kepler's Three Laws

Max Planck

Niels Bohr

Erwin Schrödinger

Bohr Atomic Model



Overview of the talk

1. Introducing Local Elasticity

2. Evidence of Local Elasticity

3. Neurashed: the Origin of Local Elasticity?



Team

Shuxiao Chen (Wharton Stats) Zhun Deng (Harvard CS)Hangfeng He (Penn CS)



Part 1

Introducing Local Elasticity



They are similar, though both complex

• 1014 synapses and lives for 
109 seconds (Hinton)

• Memorization yet w/ 
innovation

• Iterative learning

• Knowledge distillation

• 107 parameters, trained on 105 
images

• Zero training error yet w/ 
generalization

• Iterative learning

• Compression



Learn by analogy

• We humans improve our understanding of things related to 
what we see early

• Learning French might affect English, but not math

How about neural networks?



Motivating question

How does the update of weights using SGD at an image 
of cat impact the prediction at another image?

change

difference?

difference?

difference?



A measure of the prediction change

• Let 𝑓(𝒙, 𝒘) be the prediction of neural networks with weights 𝒘

• Use SGD to update 𝒘 with example (𝒙, 𝑦) and loss function ℒ(𝑓, 𝑦):

𝒘+  = 𝒘 − 𝛾
𝑑ℒ 𝑓 𝒙,  𝒘 ,  𝑦

𝑑𝒘
= 𝐰 − 𝛾

𝜕ℒ 𝑓 𝒙,  𝒘 , 𝑦

𝜕𝑓
∙

𝜕𝑓(𝒙,  𝒘)

𝜕𝒘

• Define the relative change ratio

𝑆𝑟𝑒𝑙 𝒙, 𝒙′ ≔
|𝑓 𝒙′, 𝒘+ − 𝑓(𝒙′, 𝒘)|

|𝑓 𝒙, 𝒘+ − 𝑓(𝒙, 𝒘)|

• Near optimal 𝒘



Toy manifolds

Double helix

Two folded boxes

Two-layer neural nets fitting helix

Three-layer neural nets fitting boxes

Two-layer linear nets fitting helix

Three-layer linear nets fitting boxes



Experiments on VGG19



Return to the motivating question

How does the update of weights using SGD at an image 
of cat impact the prediction at another image?

change

most

intermediate

least



Hypothesis of local elasticity in neural networks

Linear classifier updated by SGD Neural networks updated by SGD



Why no local elasticity in linear classifiers?

Give me a place to stand and I shall move the earth
                                                                     --- Archimedes



Hypothesis of local elasticity in neural networks

Linear classifier updated by SGD Neural networks updated by SGD

• Locality: relative change is large when 𝒙 and 𝒙′ are close/similar (akin 
to the nearest neighbor)

• Elasticity: relative change decreases gradually and smoothly (as 
opposed to abruptly) when 𝒙′ moves away from 𝒙

• Kicks in the late phase of training (neural collapse, Papyan, Han, and Donoho, 2020)
• Related to influence function (Koh and Liang, 2017)



Any other locally elastic classifier?



Part 2

Evidence of Local Elasticity



Semi-supervised learning via local elasticity

• Clustering via local elasticity

• Primary dataset 𝒫 = {𝑥𝑖}𝑖=1
𝑛

• Auxiliary dataset 𝒜 = { ෤𝑥𝑗}𝑗=1
𝑚

• Classifier 𝑓(𝒙, 𝒘), loss function ℒ(𝑓, 𝑦)

• Initial weights 𝒘0, learning rate 𝜂𝑡

Use relative change or something else
as proxy for the similarity of two images!



The algorithm



Results on MNIST



Yet another measure for local elasticity

• 𝑓 𝒙′, 𝒘+  − 𝑓 𝒙′, 𝒘 = 𝑓 𝒙′, 𝒘 − 𝛾
𝜕ℒ

𝜕𝑓
∙

𝜕𝑓 𝒙, 𝒘

𝜕𝒘
− 𝑓 𝒙′, 𝒘

         ≈ 𝑓 𝒙′, 𝒘 − ⟨
𝜕𝑓 𝒙′, 𝒘

𝜕𝒘
, 𝛾

𝜕ℒ

𝜕𝑓
∙

𝜕𝑓 𝒙, 𝒘

𝜕𝒘
⟩ − 𝑓 𝒙′, 𝒘  

                                              = −𝛾
𝜕ℒ

𝜕𝑓
⟨

𝜕𝑓 𝒙′, 𝒘

𝜕𝒘
,

𝜕𝑓 𝒙, 𝒘

𝜕𝒘
⟩

• Kernelized change

𝑆𝑘𝑒𝑟 𝒙, 𝒙′  ≔
𝑓 𝒙′, 𝒘+ −𝑓 𝒙′, 𝒘

−𝛾
𝜕ℒ 𝑓 𝒙, 𝒘 ,𝑦

𝜕𝑓

 ≈ ⟨
𝜕𝑓 𝒙′,𝒘

𝜕𝒘
,

𝜕𝑓 𝒙,𝒘

𝜕𝒘
⟩

• In late stages, large inner product of two cats: learning at the 
tabby cat leads to improvement at the tiger cat

• Small inner product of the tabby cat and the warplane: learning at 
the tabby cat does not affect the warplane much



Connection with neural tangent kernel

Fixed kernel! NTK doesn’t adapt to the 
semantics/labels, as opposed to local elasticity

Jacot et al, 2018

Training neural networks using GD ≈ kernel regression

• Infinite width, at very large width
• Special scaling of the weights
• GD instead of SGD

Separation between kernel method and 
deep learning: Wei et al, 2018; Allen-Zhu 
and Li, 2020…

NTK 𝒙, 𝒙′  =
𝜕𝑓 𝒙′,𝒘

𝜕𝒘
,

𝜕𝑓 𝒙,𝒘

𝜕𝒘
, 𝑤 ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛



Label-aware neural tangent kernel

LANTK 𝒙, 𝒙′ = NTK 𝒙, 𝒙′ + 𝒁(𝒙, 𝒙′, 𝑺)

Incorporate label 

info into NTK!

• 𝒁 𝒙, 𝒙′, 𝑺  is an estimator of (label of x) × (label of x’)
• Can be obtained by regressing 𝑦𝑖𝑦𝑗  on (𝑥𝑖 , 𝑥𝑗 ) 



Experiments for label-aware neural tangent kernel



Stability and generalization

Stability Generalization



Uniform stability too pessimistic

Related to the long tail theory of Feldman, 2019



Locally elastic stability

𝐸 𝛽 𝑧, 𝑧𝑗  is expected to be much smaller than sup 𝛽 𝑧, 𝑧𝑗



Part 3

Neurashed: the Origin of Local Elasticity?



Three characteristics of deep learning

Hierarchical

CompressiveIterative

• Network architectures and featur
es are hierarchically represented

• SGD and Adam are iterative

• Information is compressed during 
training (local elasticity, implicit re
gularization, information bottlene
ck)



Deep learning is hierarchical feature learning

Deep learning methods aim at learning 
feature hierarchies with features from 

higher levels of the hierarchy formed by 
the composition of lower level features.

Yoshua Bengio

Credit: https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/



Hypotheses for a phenomenological model

Goal: develop a model showing local elasticity

What I cannot create, I do not understand

Richard Feynman

Guideline: 

Hierarchical

CompressiveIterative



Inspirations: watershed

Credit: Szűcs Róbert

The watershed map of US



Watershed is locally elastic!

tiger

cat

plane

feline



The neurashed model
Nodes are features 

rather than neurons!



The neurashed model for prediction



The neurashed model for prediction

Prediction

1. Red nodes denote activated features

2. Nodes in the first layer take 1 or 0

depending on being activated or not

3. An activated node 𝐹𝑗
𝑙 has value 𝑣𝑗

𝑙 that

sums over its children, multiplied by its 

amplifying factor 𝜆𝑗
𝑙

4. Prediction probabilities 𝑝𝑐 = 𝑒𝑣𝑐/σ 𝑒𝑣𝑐



The neurashed model for prediction

0

Prediction

1. Red nodes denote activated features

2. Nodes in the first layer take 1 or 0

depending on being activated or not

3. An activated node 𝐹𝑗
𝑙 has value 𝑣𝑗

𝑙 that

sums over its children, multiplied by its 

amplifying factor 𝜆𝑗
𝑙

4. Prediction probabilities 𝑝𝑐 = 𝑒𝑣𝑐/σ 𝑒𝑣𝑐
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The neurashed model during training

Training

Training

1. Initialize 𝜆𝑗
𝑙 = 0 for all feature nodes

2. If a feature node is activated, then 

make the multiplier 𝜆𝑗
𝑙  larger

3. If a feature node is deactivated, then 

make the multiplier 𝜆𝑗
𝑙  smaller



Let’s solve puzzles via Neurashed!

Local elasticity      Implicit regularization   Information bottleneck



Neurashed implies local elasticity



Neurashed implies local elasticity



Neurashed implies local elasticity



Neurashed implies local elasticity

The more the feature is shared, the 
faster it grows

Let 𝑁𝑡 = 𝑁𝑐 = 𝑁𝑝. Then an update on a tiger 

leads to

change in logit of cat
change in logit of plane

=
5

2
 



Neurashed implies local elasticity

change in logit of cat
change in logit of plane

=
5

2
 

more impact

less impact

The difference would be more 
significant with more depth



Insights into implicit regularization
dog dog

defining features



(Small-batch) training gives implicit regularization

small-batch training

large-batch training

• Common features grow faster than rare features. A notion of sparsity?

• Common features generalize better (Ilyas et al, 2019)

• Fundamental difference between GD and SGD (Smith et al, 2020). 
Implications on NTK? 



Information bottleneck (Tishby 

and Zaslavsky, 2015)

• In the initial phase, neural networks seek to 
fit both the input and output

• In the second phase, the networks compress 
all irrelevant information of the input

Credit: Schwartz-Ziv 
and Tishby, 2017



Neurashed’s read on information bottleneck

• 2 classes, each with 4 different types
• The bottom level: initially 3 bits, later 2 bits
• The middle level: initially 2 bits, later 1 bit

0 1 2 3 4 5 6 7

exp(I(X, T))

0.8
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Summary of the neurashed model

• Features are represented as their low-level features in a 
hierarchical manner

• More related classes share more features

• Features grow as they get activated in training

Local elasticity       Implicit regularization      Information bottleneck



Future work motivated by local elasticity/neurashed

• How to (mathematically) define features?

• How do features relate to weights of the neural 
networks? Duality?

• How to model real-life data?

• How does the iterative nature of SGD/Adam relate 
to the training of neurashed

• How to quantify the information flow over layers?

Hierarchical

CompressiveIterative

An ‘ultimate’ deep learning theory should be a 
neural network itself, having hierarchical, 
iterative and compressive natures architecture/feature 

representation

optimization

data diversity



Because it’s there…
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