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Deep learning
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Elephant in the room, from a theoretical viewpoint...

Tree?




The fundamental questions in deep learning

* Why don’t heavily parameterized neural networks overfit the
data?

 What is the effective number of parameters?

Leo Breiman

 Why doesn’t backpropagation get stuck in poor local minima
with low value of the loss function, yet bad test error?



A phenomenological approach for deep learning?
details where to start
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Ideally, we want )} |

* Big picture instead of complex details

* [ntuitive, though may not be rigorous

e Guides future research




Examples of phenomenological models

» Offers a big picture

< Guides future research

* Simple, though not rigorous

J

Niels Bohr

Isaac Newton




Overview of the talk

1. Introducing Local Elasticity
2. Evidence of Local Elasticity

3. Neurashed: the Origin of Local Elasticity?




Team

Hangfeng He (Penn CS) Shuxiao Chen (Wharton Stats) Zhun Deng (Harvard CS)




Part 1

Introducing Local Elasticity



They are similar, though both complex
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* 10** synapses and lives for 107 parameters, trained on 10°
10° seconds (Hinton) images

 Memorization yet w/  Zero training error yet w/
Innovation generalization

* lterative learning * lterative learning

Knowledge distillation * Compression



Learn by analogy

 We humans improve our understanding of things related to
what we see early

* Learning French might affect English, but not math

How about neural networks?
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Motivating question

How does the update of weights using SGD at an image
of cat impact the prediction at another image?
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A measure of the prediction change

* Let f(x,w) be the prediction of neural networks with weights w

* Use SGD to update w with example (x, y) and loss function L(f, y):

_dLfx, o w), ) 0L(f(x, w), y) Of(x, w)
—wY dw —wTY af ow

e Define the relative change ratio
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* Near optimal w



Toy manifolds
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Experiments on VGG19

Updated with Class brown bear

700 A

600

500 -

400 A

300

200 A

100 ~

brown bear
leopard
tiger

0.0

0.2

0.4

0.6 0.8 1.0

Updated with Class leopard

700

600 -

500 -

400 A

300

200

100 -

brown bear
leopard
tiger

0.0

0.2

0.4

0.6 0.8 1.0

Updated with Class tiger

700

600

500 A

400 A

300 A

200 A

100 A

brown bear
leopard
tiger

0.0

0.2

0.4

0.6 0.8 1.0




Return to the motivating question

How does the update of weights using SGD at an image
of cat impact the prediction at another image?
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Hypothesis of local elasticity in neural networks

Linear classifier updated by SGD Neural networks updated by SGD



Why no local elasticity in linear classifiers?
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Give me a place to stand and | shall move the earth

--- Archimedes



Hypothesis of local elasticity in neural networks

Linear classifier updated by SGD Neural networks updated by SGD

 Locality: relative change is large when x and x’ are close/similar (akin
to the nearest neighbor)

* Elasticity: relative change decreases gradually and smoothly (as
opposed to abruptly) when x’ moves away from x

* Kicks in the late phase of training (neural collapse, Papyan, Han, and Donoho, 2020)
* Related to influence function (Koh and Liang, 2017)



Any other locally elastic classifier?




Part 2

Evidence of Local Elasticity



Semi-supervised learning via local elasticity

Mammal (primary)
* Clustering via local elasticity

Dog

* Primary dataset P = {x;}i*, Cat

* Auxiliary dataset A = {¥;}L,

* Classifier f(x,w), loss function L(f,y) Vehicle (auxiliary)

* Initial weights w, learning rate n;

Use relative change or something else
as proxy for the similarity of two images!




The algorithm

Algorithm 1 The Local Elasticity Based Clustering Algorithm

combine D = {(x;,y; = 1) forx; € P} U{(x;,y; = —1) forx; € A}
set S ton x n matrix of all zeros
fort =1ton+ mdo
sample (x,y) from D w/o replacement
wy = SGD(wy_1, 2, y, f, L, )
if y =1 then
p; = Predict(wy, P, f)
findl <i<nsuchthatz =x; €¢ P
if o = relative then

S, — |pt_pt—1|
t Pt (2) —De—1(2)]
else
g¢ = GetGradient(wt_l, x,y, [, E)
S; = Pt—Pt—1
—MNt X gt
end if
end if
set the ith row S(i,:) = sy
end for

Ssymm = 5(S+S71)
Ysubclass = C|UStering(Ssymm)
return Ysubclass




Results on MINIST

Primary Examples 5vs8 | 4vs9 | 7/vs9 | 5vs9 | 3vs5 | 3vs8
Auxiliary Examples 3,9 5,7 4,5 4, 8 8,9 5
K-means 504 545 555 56.3 69.0 /6.5
PCA + K-means 504 545 557 56.5 70.7 /6.4
¢5-relative(linear) 51.0 54.6 51.3 58.8 58.3 58.7
¢5-kernelized (linear) 50.1 555 555 56.3 69.3 76.1
¢5-relative (FNN) 75.9 556 62.5 89.3 50.3 4.7
¢5-kernelized (FNN) 71.0 63.8 64.6 67.8 71.5 78.8
¢5-relative (CNN) 54.2 537 39.1 501 501 83.0
¢5-kernelized (CNN) 04.1 69.5 91.3 97.6 75.3 87.4
¢5-relative (ResNet) 50.7 55.0 555 /8.3 52.3 52.3
¢5-kernelized (ResNet) | 50.2 60.4 54.8 76.3 66.9 68.8




Yet another measure for local elasticity

c fGwh) = fw) = f (2w - Vgﬁ L) f(x, w)
~ f,w) — (L, y 2 L) (e w)

_ar (a fx',w) af(x, w)>
= V5 Y oow T ow
e Kernelized change
S, (x, x') = f(x',wt)—r(x', w) <6f(x w) af(xw)>
ker OL(f(x,w),y) ~ ow
4
af
/ * In late stages, large inner product of two cats: learning at the
tabby cat leads to improvement at the tiger cat
v * Small inner product of the tabby cat and the warplane: learning at
cans the tabby cat does not affect the warplane much




Connection with neural tangent kernel

af(x'.w) oaf(xw)

ow ' ow

NTK(x, x') = < >,W ~ Gaussian Jacot et al, 2018

Training neural networks using GD = kernel regression

* [Infinite width, at very large width

* Special scaling of the weights Separation between kernel method and
e GDinstead of SGD deep learning: Wei et al, 2018; Allen-Zhu
and Li, 2020...

Fixed kernel! NTK doesn’t adapt to the
semantics/labels, as opposed to local elasticity




Label-aware neural tangent kernel

Incorporate label
info info NTK!

LANTK(x, x') =NTK(x, x') + Z(x,x',S)

e« Z(x,x',S) is an estimator of (label of x) X (label of x’)
* Can be obtained by regressing y;y; on (x;, x; )



Experiments for label-aware neural tangent kernel

" Train-train || frog vs ship | frog vs truck | deer vs ship | dog vs truck | bird vs truck | deer vs truck
NN-init 58.37 55.07 57.50 54.75 52.93 54.86
NN-trained 71.99 © 68.36 T 69.98 1 66.35 T 63.99 1 65.96 T
NTK 63.83 58.31 62.43 58.05 55.01 58.02
LANTK 66.62 60.57 1 64.90 59.75 1 55.94 59.59 1
Test-train frog vs ship | frog vs truck | deer vs ship | dog vs truck | bird vs truck | deer vs truck
NN-init 58.31 55.06 57.64 54.62 52.93 54.94
NN-trained 71457 67.91 1 69.73 1 65.80 63.58 T 6533 7
NTK 63.76 58.30 62.67 57.84 55.00 58.14
LANTK 66.53 1 60.08 1 65.20 1 59.54 1 5597 ¢ 59.77 T

Table 3: Strength of local elasticity in binary classification tasks on CIFAR-10. The training makes
NNs more locally elastic, and LANTK successfully simulates this behavior.



Stability and generalization

Journal of Machine Learning Research 2 {2002) 490-526 Submitted 7/01:; Published 3/02

Stability and Generalization
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Abstract

We define notions of stability for learning algorithms and show how to use these notions to
derive generalization error bounds based on the empirical error and the leave-one-out error. The
methods we use can be applied in the regression framework az well as in the classification one when
the classifier iz obtained by thresholding a real-valued function. We study the stability properties
of large classes of learning algorithms such as regularization based algorithms. In particular we
focus on Hilbert space regularization and Kullback-Leibler regularization. We demonstrate how
to apply the results to SVM for regression and classification.



Uniform stability too pessimistic @E eASE
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Locally elastic stability

Definition 2.1 (Local Elasticity). For a certain (abstract) distance or divergence &, an algo-
rithm A satisfies Local Elasticity with respect to loss function [ and % if there exists a function
B (-) that is dependent on sample size m, such that

VS € 2™, Vi€ [m] 2 € Z, |l(Ag,z) — U Agwv, 2)| < B (Z(2i,2)).

1 — 2sup,.z E, B(z, 2;) me?
PlE.|l 2)| = — [ z = — c) < 2e: — —
(E-[(As, 2)] g (As, ) + +e) <2exp (- =5)

E B(z, zj) is expected to be much smaller than sup £(z, zj)



Part 3

Neurashed: the Origin of Local Elasticity?



Three characteristics of deep learning

e Network architectures and featur
es are hierarchically represented
e SGD and Adam are iterative

Iterative Compressive * |nformation is compressed during

training (local elasticity, implicit re
gularization, information bottlene
ck)



Deep learning is hierarchical feature learning

Deep learning methods aim at learning
feature hierarchies with features from
higher levels of the hierarchy formed by

the composition of lower level features.

Yoshua Bengio

Output Layer

Input Layer

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

SR

combinations of edges object models
Credit: https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/




Hypotheses for a phenomenological model

Goal: develop a model showing local elasticity

What | cannot create, | do not understand

Guideline:

Hierarchical

Richard Feynman




Inspirations: watershed

The watershed map of US

© Imgur/ Fejetientfej

Credit: Sz(ics Rébert



Watershed is locally elastic!
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The neurashed model
o

Nodes are features

rather than neurons!



The neurashed model for prediction




The neurashed model for prediction

1. Red nodes denote activated features

2. Nodes in the first layer take 1 or O

depending on being activated or not

3. An activated node Fjl has value vjl that

sums over its children, multiplied by its

amplifying factor /111-

4. Prediction probabilities p, = eV¢/); eVe




The neurashed model for prediction

1. Red nodes denote activated features

2. Nodes in the first layer take 1 or O

depending on being activated or not

3. An activated node Fjl has value vjl that

sums over its children, multiplied by its

amplifying factor /111-

4. Prediction probabilities p, = eV¢/); eVe




The neurashed model during training

C

1. Initialize /111- = 0 for all feature nodes

<
& |2. Ifafeature node is activated, then

(
@
\ \’ make the multiplier /111- larger

‘gb‘ 3. If a feature node is deactivated, then

make the multiplier /111- smaller

Perfection through practice

* Cells that fire together, wire
together (Hebbian theory)




Let’s solve puzzles via Neurashed!

Local elasticity Implicit regularization Information bottleneck
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Neurashed implies local elasticity




Neurashed implies local elasticity
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Neurashed implies local elasticity
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Neurashed implies local elasticity

The more the feature is shared, the
et cat ovane faster it grows

Let Nt = N = N,,. Then an update on a tiger
leads to
change in logit of cat 5

change in logit of plane 2




Neurashed implies local elasticity

change in logit of cat 5

change in logit of plane 2

The difference would be more
significant with more depth




Insights into implicit regularization

\ 3&0@6 dog

e

Q0% o)

L o o ] defining features

e S,

dog




(Small-batch) training gives implicit regularization

e Common features grow faster than rare features. A notion of sparsity?
e Common features generalize better (llyas et al, 2019)

 Fundamental difference between GD and SGD (Smith et al, 2020).
Implications on NTK?



Information bottleneck (Tishby
and Zaslavsky, 2015)

* |n the initial phase, neural networks seek to
fit both the input and output

* In the second phase, the networks compress

all irrelevant information of the input

1.0

3 5 7 9 11

I(X;T)

Credit: Schwartz-Ziv
and Tishby, 2017



Neurashed’s read on information bottleneck

/
/3
N

* 2 classes, each with 4 different types
* The bottom level: initially 3 bits, later 2 bits
 The middle level: initially 2 bits, later 1 bit

exp(I(X, T))



Summary of the neurashed model

* Features are represented as their low-level features in a
hierarchical manner

* More related classes share more features

* Features grow as they get activated in trai

Local elasticity  Implicit regularization  Information bottleneck
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Future work motivated by local elasticity/neurashed

An ‘ultimate’ deep learning theory should be a
neural network itself, having hierarchical,
iterative and compressive natures
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How to (mathematically) define features?

How do features relate to weights of the neural Itelz%@
networks? Duality?

ﬂ

y@’(,\ \

How to model real-life data?

How does the iterative nature of SGD/Adam relate
to the training of neurashed

How to quantify the information flow over layers?



Because it’s there...




References

1. The Local Elasticity of Neural Networks. w/ Hangfeng He. ICLR 2020 (arXiv:1910.06943)

2. Label-Aware Neural Tangent Kernel: Toward Better Generalization and Local
Elasticity. w/ Shuxiao Chen and Hangfeng He. NeurIPS 2020 (arXiv:2010.11775)

3. Toward Better Generalization Bounds with Locally Elastic Stability. w/ Zhun Deng
and Hangfeng He. ICML 2021 (arXiv:2010.13988)

4. Neurashed: A Phenomenological Model for Imitating Deep Learning Training
(arXiv:2112.09741)

5. Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential
Equations. w/ Jiayao Zhang and Hua Wang. NeurlPS 2021 (arXiv:2110.05960)

Acknowledgement: NSF CAREER award, Sloan research fellowship, @weijied44

NSF TRIPODS, and Wharton Dean’s funding



	Slide 0: Understanding Deep Learning via Deep Learning? A Phenomenological Approach
	Slide 1: Deep learning
	Slide 2: Elephant in the room, from a theoretical viewpoint…
	Slide 3: The fundamental questions in deep learning
	Slide 4: A phenomenological approach for deep learning? 
	Slide 5: Examples of phenomenological models
	Slide 6: Overview of the talk
	Slide 7: Team
	Slide 8
	Slide 9: They are similar, though both complex
	Slide 10: Learn by analogy
	Slide 11: Motivating question
	Slide 12: A measure of the prediction change
	Slide 13: Toy manifolds
	Slide 14: Experiments on VGG19
	Slide 15: Return to the motivating question
	Slide 16: Hypothesis of local elasticity in neural networks
	Slide 17: Why no local elasticity in linear classifiers?
	Slide 18: Hypothesis of local elasticity in neural networks
	Slide 19: Any other locally elastic classifier?
	Slide 20
	Slide 21: Semi-supervised learning via local elasticity
	Slide 22: The algorithm
	Slide 23: Results on MNIST
	Slide 24: Yet another measure for local elasticity
	Slide 25: Connection with neural tangent kernel
	Slide 26: Label-aware neural tangent kernel
	Slide 27: Experiments for label-aware neural tangent kernel
	Slide 28: Stability and generalization
	Slide 29: Uniform stability too pessimistic
	Slide 30: Locally elastic stability
	Slide 31
	Slide 32: Three characteristics of deep learning
	Slide 33: Deep learning is hierarchical feature learning
	Slide 34: Hypotheses for a phenomenological model
	Slide 35: Inspirations: watershed 
	Slide 37: Watershed is locally elastic! 
	Slide 38: The neurashed model
	Slide 39: The neurashed model for prediction
	Slide 40: The neurashed model for prediction
	Slide 41: The neurashed model for prediction
	Slide 42: The neurashed model during training
	Slide 43: Let’s solve puzzles via Neurashed!
	Slide 44: Neurashed implies local elasticity
	Slide 45: Neurashed implies local elasticity
	Slide 46: Neurashed implies local elasticity
	Slide 47: Neurashed implies local elasticity
	Slide 48: Neurashed implies local elasticity
	Slide 49: Insights into implicit regularization
	Slide 50: (Small-batch) training gives implicit regularization
	Slide 51
	Slide 52: Neurashed’s read on information bottleneck
	Slide 53: Summary of the neurashed model
	Slide 54: Future work motivated by local elasticity/neurashed
	Slide 55: Because it’s there…
	Slide 56: References

