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FALSE DISCOVERIES OCCUR EARLY ON THE LASSO
PATH

By Weijie Su∗ and Ma lgorzata Bogdan† and Emmanuel Candès‡

University of Pennsylvania, University of Wroclaw, and Stanford
University

In regression settings where explanatory variables have very low
correlations and there are relatively few effects, each of large magni-
tude, we expect the Lasso to find the important variables with few
errors, if any. This paper shows that in a regime of linear sparsity—
meaning that the fraction of variables with a non-vanishing effect
tends to a constant, however small—this cannot really be the case,
even when the design variables are stochastically independent. We
demonstrate that true features and null features are always inter-
spersed on the Lasso path, and that this phenomenon occurs no mat-
ter how strong the effect sizes are. We derive a sharp asymptotic
trade-off between false and true positive rates or, equivalently, be-
tween measures of type I and type II errors along the Lasso path.
This trade-off states that if we ever want to achieve a type II er-
ror (false negative rate) under a critical value, then anywhere on the
Lasso path the type I error (false positive rate) will need to exceed a
given threshold so that we can never have both errors at a low level
at the same time. Our analysis uses tools from approximate mes-
sage passing (AMP) theory as well as novel elements to deal with a
possibly adaptive selection of the Lasso regularizing parameter.

1. Introduction. Almost all data scientists know about and routinely
use the Lasso [30, 31] to fit regression models. In the big data era, where
the number p of explanatory variables often exceeds the number n of ob-
servational units, it may even supersede the method of least-squares. One
appealing feature of the Lasso over earlier techniques such as ridge regres-
sion is that it automatically performs variable reduction, since it produces
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models where lots of—if not most—regression coefficients are estimated to
be exactly zero. In high-dimensional problems where p is either comparable
to n or even much larger, the Lasso is believed to select those important
variables out of a sea of potentially many irrelevant features.

Imagine we have an n×p design matrixX of features, and an n-dimensional
response y obeying the standard linear model

y = Xβ + z,

where z is a noise term. The Lasso is the solution to

(1.1) β̂(λ) = argmin
b∈Rp

1
2‖y −Xb‖

2 + λ ‖b‖1;

if we think of the noise term as being Gaussian, we interpret it as a penalized
maximum likelihood estimate, in which the fitted coefficients are penalized
in an `1 sense, thereby encouraging sparsity. (There are nowadays many
variants on this idea including `1-penalized logistic regression [31], elastic
nets [40], graphical Lasso [36], adaptive Lasso [39], and many others.) As is
clear from (1.1), the Lasso depends upon a regularizing parameter λ, which
must be chosen in some fashion: in a great number of applications this is
typically done via adaptive or data-driven methods; for instance, by cross-
validation [15, 23, 37, 27]. Below, we will refer to the Lasso path as the family
of solutions β̂(λ) as λ varies between 0 and ∞. We say that a variable j is
selected at λ if β̂j(λ) 6= 0.1

The Lasso is, of course, mostly used in situations where the true regres-
sion coefficient sequence is suspected to be sparse or nearly sparse. In such
settings, researchers often believe—or, at least, wish—that as long as the
true signals (the nonzero regression coefficients) are sufficiently strong com-
pared to the noise level and the regressor variables weakly correlated, the
Lasso with a carefully tuned value of λ will select most of the true signals
while picking out very few, if any, noise variables. This belief is supported by
theoretical asymptotic results discussed below, which provide conditions for
perfect support recovery, i.e. for perfectly identifying which variables have
a non-zero effect, see [35, 34, 29] for instance. Since these results guarantee
that the Lasso works well in an extreme asymptotic regime, it is tempting to
over-interpret what they actually say, and think that the Lasso will behave
correctly in regimes of practical interest and offer some guarantees there as
well. However, some recent works such as [18] have observed that the Lasso

1We also say that a variable j enters the Lasso path at λ0 if there is there is ε > 0 such
that β̂j(λ) = 0 for λ ∈ [λ0 − ε, λ0] and β̂j(λ) 6= 0 for λ ∈ (λ0, λ0 + ε]. Similarly a variable

is dropped at λ0 if β̂j(λ) 6= 0 for λ ∈ [λ0 − ε, λ0) and β̂j(λ) = 0 for λ ∈ [λ0, λ0 + ε].
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has problems in selecting the proper model in practical applications, and
that false discoveries may appear very early on the Lasso path. This is the
reason why [7, 6, 28] suggest that the Lasso should merely be considered as
a variable screener rather than a model selector.

While the problems with the Lasso ordering of predictor variables are
recognized, they are often attributed to (1) correlations between predictor
variables, and (2) small effect sizes. In contrast, the novelty and message
of our paper is that the selection problem also occurs when the signal-to-
noise ratio is infinitely large (no noise) and the regressors are stochastically
independent; we consider a random designX with independent columns, and
as a result, all population correlations vanish (so the sample correlations are
small). We also explain that this phenomenon is mainly due to the shrinkage
of regression coefficients, and does not occur when using other methods,
e.g. an `0 penalty in (1.1) rather than the `1 norm, compare Theorem 3.1
below.

Formally, we study the value of the false discovery proportion (FDP),
the ratio between the number of false discoveries and the total number of
discoveries, along the Lasso path.2 This requires notions of true/false dis-
coveries, and we pause to discuss this important point. In high dimensions,
it is not a trivial task to define what are true and false discoveries, see
e.g. [4, 20, 33, 19, 22]; these works are concerned with a large number of
correlated regressors, where it is not clear which of these should be selected
in a model. In response, we have selected to work in the very special case
of independent regressors precisely to analyze a context where such com-
plications do not arise and it is, instead, quite clear what true and false
discoveries are. We classify a selected regressor Xj to be a false discovery
if it is stochastically independent from the response, which in our setting is
equivalent to βj = 0. Indeed, under no circumstance can we say that that
such a variable, which has zero explanatory power, is a true discovery.

Having clarified this point and as a setup for our theoretical findings,
Figure 1 studies the performance of the Lasso under a 1010×1000 a random
Gaussian design, where the entries ofX are independent draws fromN (0, 1).
Set β1 = · · · = β200 = 4, β201 = · · · = β1000 = 0 and the errors to be
independent standard normals. Hence, we have 200 nonzero coefficients out
of 1000 (a relatively sparse setting), and a very large signal-to-noise ratio
(SNR). For instance, if we order the variables by the magnitude of the least-
squares estimate, which we can run since n = 1010 > 1000 = p, then with
probability practically equal to one, all the top 200 least-squares discoveries

2Similarly, the TPP is defined as the ratio between the number of true discoveries and
that of potential true discoveries to be made.
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correspond to true discoveries, i.e. variables for which βj = 4. This is in
sharp contrast with the Lasso, which selects null variables rather early. To
be sure, when the Lasso includes half of the true predictors so that the
false negative proportion falls below 50% or true positive proportion (TPP)
passes the 50% mark, the FDP has already passed 8% meaning that we have
already made 9 false discoveries. The FDP further increases to 19% the first
time the Lasso model includes all true predictors, i.e. achieves full power
(false negative proportion vanishes).
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Fig 1: True positive and false positive rates along the Lasso path as
compared to the ordering provided by the least-squares estimate.

Figure 2 provides a closer look at this phenomenon, and summarizes the
outcomes from 100 independent experiments under the same Gaussian ran-
dom design setting. In all the simulations, the first noise variable enters the
Lasso model before 44% of the true signals are detected, and the last true
signal is preceded by at least 22 and, sometimes, even 54 false discoveries.
On average, the Lasso detects about 32 signals before the first false variable
enters; to put it differently, the TPP is only 16% at the time the first false
discovery is made. The average FDP evaluated the first time all signals are
detected is 15%. For related empirical results, see e.g. [18].

The main contribution of this paper is to provide a quantitative descrip-
tion of this phenomenon in the asymptotic framework of linear sparsity
defined below and previously studied e.g. in [3]. Assuming a random design
with independent Gaussian predictors as above, we derive a fundamental
Lasso trade-off between power (the ability to detect signals) and type I er-
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Fig 2: Left: power when the first false variable enters the Lasso model.
Right: false discovery proportion the first time power reaches one
(false negative proportion vanishes).

rors or, said differently, between the true positive and the false positive rates.
This trade-off says that it is impossible to achieve high power and a low false
positive rate simultaneously. Formally, we compute the formula for an exact
boundary curve separating achievable (TPP,FDP) pairs from pairs that are
impossible to achieve no matter the value of the signal-to-noise ratio (SNR).
Hence, we prove that there is a whole favorable region in the (TPP,FDP)
plane that cannot be reached, see Figure 3 for an illustration.

2. The Lasso Trade-off Diagram.

2.1. Linear sparsity and the working model. We mostly work in the set-
ting of [3], which specifies the design X ∈ Rn×p, the parameter sequence
β ∈ Rp and the errors z ∈ Rn. The design matrix X has i.i.d. N (0, 1/n)
entries so that the columns are approximately normalized, and the errors
zi are i.i.d. N (0, σ2), where σ is fixed but otherwise arbitrary. Note that
we do not exclude the value σ = 0 corresponding to noiseless observations.
The regression coefficients β1, . . . , βp are independent copies of a random
variable Π obeying EΠ2 < ∞ and P(Π 6= 0) = ε ∈ (0, 1) for some constant
ε. For completeness, X,β, and z are all independent from each other. As in
[3], we are interested in the limiting case where p, n→∞ with n/p→ δ for
some positive constant δ. A few comments are in order.

Linear sparsity. The first concerns the degree of sparsity. In our model, the
expected number of nonzero regression coefficients is linear in p and equal
to ε · p for some ε > 0. Hence, this model excludes a form of asymptotics
discussed in [35, 34, 29], for instance, where the fraction of nonzero coeffi-
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cients vanishes in the limit of large problem sizes. Specifically, our results
do not contradict asymptotic results from [35] predicting perfect support
recovery in an asymptotic regime, where the number of k of variables in the
model obeys k/p ≤ δ/(2 log p) · (1 + o(1)) and the effect sizes all grow like
c · σ
√

2 log p, where c is an unknown numerical constant. The merit of the
linear sparsity regime lies in the fact that our theory makes accurate predic-
tions when describing the performance of the Lasso in practical settings with
moderately large dimensions and reasonable values of the degree of sparsity,
including rather sparse signals. The precision of these predictions is illus-
trated in Figure 5 and in Section 4. In the latter case, n = 250, p = 1000
and the number of k of signals is very small, i.e. k = 18.

Gaussian designs. Second, Gaussian designs with independent columns are
believed to be “easy” or favorable for model selection due to weak corre-
lations between distinct features. (Such designs happen to obey restricted
isometry properties [8] or restricted eigenvalue conditions [5] with high prob-
ability, which have been shown to be useful in settings sparser than those
considered in this paper.) Hence, negative results under the working hypoth-
esis are likely to extend more generally.

Regression coefficients. Third, the assumption concerning the distribution
of the regression coefficients can be slightly weakened: all we need is that
the sequence β1, . . . , βp has a convergent empirical distribution with bounded
second moment. We shall not pursue this generalization here.

2.2. Main result. Throughout the paper, V (resp. T ) denotes the number
of Lasso false (resp. true) discoveries while k = |{j : βj 6= 0}| denotes the

number of true signals; formally, V (λ) = |{j : β̂j(λ) 6= 0 and βj = 0}|
whereas T (λ) = |{j : β̂j(λ) 6= 0 and βj 6= 0}|. With this, we define the FDP
as usual,

(2.1) FDP(λ) =
V (λ)

|{j : β̂j(λ) 6= 0}| ∨ 1

and, similarly, the TPP is defined as

(2.2) TPP(λ) =
T (λ)

k ∨ 1

(above, a ∨ b = max{a, b}). The dependency on λ shall often be suppressed
when clear from the context. Our main result provides an explicit trade-off
between FDP and TPP.
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Theorem 2.1. Fix δ ∈ (0,∞) and ε ∈ (0, 1), and consider the function
q?(·) = q?(·; δ, ε) > 0 given in (2.4). Then under the working hypothesis and
for any arbitrary small constants λ0 > 0 and η > 0, the following conclusions
hold:

(a) In the noiseless case (σ = 0), the event

(2.3)
⋂
λ≥λ0

{
FDP(λ) ≥ q? (TPP(λ))− η

}
holds with probability tending to one. (The lower bound on λ in (2.3)
does not impede interpretability since we are not interested in variables
entering the path last.)

(b) With noisy data (σ > 0) the conclusion is exactly the same as in (a).
(c) Therefore, in both the noiseless and noisy cases, no matter how we

choose λ̂(y,X) ≥ c1 adaptively by looking at the response y and
design X, with probability tending to one we will never have FDP(λ̂) <
q?(TPP(λ̂))− c2.

(d) The boundary curve q? is tight: any continuous curve q(u) ≥ q?(u)
with strict inequality for some u will fail (a) and (b) for some prior
distribution Π on the regression coefficients.

A different way to phrase the trade-off is via false discovery and false neg-
ative rates. Here, the FDP is a natural measure of type I error while 1−TPP
(often called the false negative proportion) is the fraction of missed signals, a
natural notion of type II error. In this language, our results simply say that
nowhere on the Lasso path can both types of error rates be simultaneously
low.

Remark 1. We would like to emphasize that the boundary is derived
from a best-case point of view. For a fixed prior Π, we also provide in The-
orem D.2 from Appendix D a trade-off curve qΠ between TPP and FDP,
which always lies above the boundary q?. Hence, the trade-off is of course
less favorable when we deal with a specific Lasso problem. In fact, q? is
nothing else but the lower envelope of all the instance-specific curves qΠ

with P(Π 6= 0) = ε.

Figure 3 presents two instances of the Lasso trade-off diagram, where
the curve q?(·) separates the red region, where both type I and type II
errors are small, from the rest (the white region). Looking at this picture,
Theorem 2.1 says that nowhere on the Lasso path we will find ourselves in
the red region, and that this statement continues to hold true even when
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there is no noise. Our theorem also says that we cannot move the boundary
upward. As we shall see, we can come arbitrarily close to any point on the
curve by specifying a prior Π and a value of λ. Note that the right plot is
vertically truncated at 0.6791, implying that TPP cannot even approach 1
in the regime of δ = 0.3, ε = 0.15. This upper limit is where the Donoho-
Tanner phase transition occurs [14], see the discussion in Section 2.6 and
Appendix C.
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Fig 3: The Lasso trade-off diagram: left is with δ = 0.5 and ε = 0.15,
and right is with δ = 0.3 and ε = 0.15 (the vertical truncation occurs
at 0.6791).

Support recovery from noiseless data is presumably the most ideal sce-
nario. Yet, the trade-off remains the same as seen in the first claim of the
theorem. As explained in Section 3, this can be understood by considering
that the root cause underlying the trade-off in both the noiseless and noisy
cases come from the pseudo-noise introduced by shrinkage.

2.3. The boundary curve q?. We now turn to specify q?. For a fixed u,
let t?(u) be the largest positive root3 of the equation in t,

2(1− ε)
[
(1 + t2)Φ(−t)− tφ(t)

]
+ ε(1 + t2)− δ

ε [(1 + t2)(1− 2Φ(−t)) + 2tφ(t)]
=

1− u
1− 2Φ(−t)

.

Then

(2.4) q?(u; δ, ε) =
2(1− ε)Φ(−t?(u))

2(1− ε)Φ(−t?(u)) + εu
.

3If u = 0, treat +∞ as a root of the equation, and in (2.4) conventionally set 0/0 = 0.
In the case where δ ≥ 1, or δ < 1 and ε is no larger than a threshold determined only by
δ, the range of u is the unit interval [0, 1]. Otherwise, the range of u is the interval with
endpoints 0 and some number strictly smaller than 1, see the discussion in Appendix C.
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It can be shown that this function is infinitely many times differentiable over
its domain, always strictly increasing, and vanishes at u = 0. Matlab code
to calculate q? is available at https://github.com/wjsu/fdrlasso.

Figure 4 displays examples of the function q? for different values of ε
(sparsity), and δ (dimensionality). It can be observed that the issue of FDR
control becomes more severe when the sparsity ratio ε = k/p increases and
the dimensionality 1/δ = p/n increases.
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Fig 4: Top-left is with δ = 1; top-right is with ε = 0.2; bottom-left
is with δ = 0.1; and bottom-right is with ε = 0.05.

2.4. Numerical illustration. Figure 5 provides the outcomes of numerical
simulations for finite values of n and p in the noiseless setup where σ = 0.
For each of n = p = 1000 and n = p = 5000, we compute 10 independent
Lasso paths and plot all pairs (TPP,FDP) along the way. In Figure 5a we
can see that when TPP < 0.8, then the large majority of pairs (TPP,FDP)
along these 10 paths are above the boundary. When TPP approaches one,
the average FDP becomes closer to the boundary and a fraction of the paths

https://github.com/wjsu/fdrlasso
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fall below the line. As expected this proportion is substantially smaller for
the larger problem size.
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Fig 5: In both (a) and (b), n/p = δ = 1, ε = 0.2, and the noise level is
σ = 0 (noiseless). (a) FDP vs. TPP along 10 independent Lasso paths
with P(Π = 50) = 1 − P(Π = 0) = ε. (b) Mean FDP vs. mean TPP
averaged at different values of λ over 100 replicates for n = p = 1000,
P(Π = 0) = 1 − ε as before, and P(Π = 50|Π 6= 0) = 1 − P(Π =
0.1|Π 6= 0) = ε′.

2.5. Sharpness. The last conclusion from the theorem stems from the
following fact: take any point (u, q?(u)) on the boundary curve; then we can
approach this point by fixing ε′ ∈ (0, 1) and setting the prior to be

Π =


M, w.p. ε · ε′,
M−1, w.p. ε · (1− ε′),
0, w.p. 1− ε.

We think of M as being very large so that the (nonzero) signals are either
very strong or very weak. In Appendix C, we prove that for any u between
0 and 1 there is some fixed ε′ = ε′(u) > 0 such that4

(2.5) lim
M→∞

lim
n,p→∞

(TPP(λ),FDP(λ))→ (u, q?(u)),

4In some cases u should be bounded above by some constant strictly smaller than 1.
See the previous footnote for details.
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where convergence occurs in probability. This holds provided that λ → ∞
in such a way that M/λ → ∞; e.g. λ =

√
M . Hence, the most favorable

configuration is when the signal is a mixture of very strong and very weak
effect sizes because weak effects cannot be counted as false positives, thus
reducing the FDP.

Figure 5b provides an illustration of (2.5). The setting is as in Figure 5a
with n = p = 1000 and P(Π = 0) = 1 − ε except that, here, conditionally
on being nonzero the prior takes on the values 50 and 0.1 with probability
ε′ ∈ {0.3, 0.5, 0.7, 0.9} and 1− ε′, respectively, so that we have a mixture of
strong and weak signals. We observe that the true/false positive rate curve
nicely touches only one point on the boundary depending on the proportion
ε′ of strong signals .

2.6. Technical novelties and comparisons with other works. The proof
of Theorem 2.1 is built on top of the approximate message passing (AMP)
theory developed in [11, 2, 1], and requires nontrivial extensions. AMP was
originally designed as an algorithmic solution to compressive sensing prob-
lems under random Gaussian designs. In recent years, AMP has also found
applications in robust statistics [12, 13], structured principal component
analysis [10, 25], and the analysis of the stochastic block model [9]. Having
said this, AMP theory is of crucial importance to us because it turns out to
be a very useful technique to rigorously study various statistical properties
of the Lasso solution whenever we employ a fixed value of the regularizing
parameter λ [3, 24, 26].

There are, however, major differences between our work and AMP re-
search. First and foremost, our paper is concerned with situations where λ
is selected adaptively, i.e. from the data; this is clearly outside of the enve-
lope of current AMP results. Second, we are also concerned with situations
where the noise variance can be zero. Likewise, this is outside of current
knowledge. These differences are significant and as far as we know, our main
result cannot be seen as a straightforward extension of AMP theory. In par-
ticular, we introduce a host of novel elements to deal, for instance, with the
irregularity of the Lasso path. The irregularity means that a variable can
enter and leave the model multiple times along the Lasso path [16, 32] so
that natural sequences of Lasso models are not nested. This implies that
a naive application of sandwiching inequalities does not give the type of
statements holding uniformly over all λ’s that we are looking for.

Instead, we develop new tools to understand the “continuity” of the sup-
port of β̂(λ) as a function of λ. Since the support can be characterized by
the Karush-Kuhn-Tucker (KKT) conditions, this requires establishing some
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sort of continuity of the KKT conditions. Ultimately, we shall see that this
comes down to understanding the maximum distance—uniformly over λ and
λ′—between Lasso estimates β̂(λ) and β̂(λ′) at close values of the regulariz-
ing parameter. A complete statement of this important intermediate result
is provided in Lemma B.2 from Appendix B.

Our results can also be compared to the phase-transition curve from [14],
which was obtained under the same asymptotic regime and describes condi-
tions for perfect signal recovery in the noiseless case. The solution algorithm
there is the linear program, which minimizes the `1 norm of the fitted coef-
ficients under equality constraints, and corresponds to the Lasso solution in
the limit of λ→ 0 (the end or bottom of the Lasso path). The conditions for
perfect signal recovery by the Lasso turn out to be far more restrictive than
those related to this linear program. For example, our FDP-TPP trade-off
curves show that perfect recovery of an infinitely large signal by Lasso is
often practically impossible even when n ≥ p (see Figure 4). Interestingly,
the phase-transition curve also plays a role in describing the performance
of the Lasso, since it turns out that for signals dense enough not to be re-
covered by the linear program, not only does the Lasso face the problem of
early false discoveries, it also hits a power limit for arbitrary small values of
λ (see the discussion in Appendix C).

Finally, we would like also to point out that some existing works have
investigated support recovery in regimes including linear sparsity under ran-
dom designs (see e.g. [34, 29]). These interesting results were, however, ob-
tained by taking an information-theoretic point of view and do not apply to
computationally feasible methods such as the Lasso.

3. What’s Wrong with Shrinkage?.

3.1. Performance of `0 methods. We wrote earlier that not all methods
share the same difficulties in identifying those variables in the model. If the
signals are sufficiently strong, some other methods, perhaps with exponen-
tial computational cost, can achieve good model selection performance, see
e.g. [29]. As an example, consider the simple `0-penalized maximum likeli-
hood estimate,

(3.1) β̂0 = argmin
b∈Rp

‖y −Xb‖2 + λ ‖b‖0.

Methods known as AIC, BIC and RIC (short for risk inflation criterion)
are all of this type and correspond to distinct values of the regularizing
parameter λ. It turns out that such fitting strategies can achieve perfect
separation in some cases.
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Theorem 3.1. Under our working hypothesis, take ε < δ for identifia-
bility, and consider the two-point prior

Π =

{
M, w.p. ε,

0, w.p. 1− ε.

Then we can find λ(M) such that in probability, the discoveries of the `0
estimator (3.1) obey

lim
M→∞

lim
n,p→∞

FDP = 0 and lim
M→∞

lim
n,p→∞

TPP = 1.

The proof of the theorem is in Appendix E. Similar conclusions will cer-
tainly hold for many other non-convex methods, including SCAD and MC+
with properly tuned parameters [17, 38].

3.2. Some heuristic explanation. In light of Theorem 3.1, we pause to
discuss the cause underlying the limitations of the Lasso for variable se-
lection, which comes from the pseudo-noise introduced by shrinkage. As is
well-known, the Lasso applies some form of soft-thresholding. This means
that when the regularization parameter λ is large, the Lasso estimates are
seriously biased downwards. Another way to put this is that the residuals
still contain much of the effects associated with the selected variables. This
can be thought of as extra noise that we may want to call shrinkage noise.
Now as many strong variables get picked up, the shrinkage noise gets inflated
and its projection along the directions of some of the null variables may ac-
tually dwarf the signals coming from the strong regression coefficients; this
is why null variables get picked up. Although our exposition below dramat-
ically lacks in rigor, it nevertheless formalizes this point in some qualitative
fashion. It is important to note, however, that this phenomenon occurs in
the linear sparsity regime considered in this paper so that we have suffi-
ciently many variables for the shrinkage noise to build up and have a fold on
other variables that becomes competitive with the signal. In contrast, under
extreme sparsity and high SNR, both type I and II errors can be controlled
at low levels, see e.g. [21].

For simplicity, we fix the true support T to be a deterministic subset of size
ε · p, each nonzero coefficient in T taking on a constant value M > 0. Also,
assume δ > ε. Finally, since the noiseless case z = 0 is conceptually perhaps
the most difficult, suppose σ = 0. Consider the reduced Lasso problem first:

β̂T (λ) = argmin
bT ∈Rεp

1
2‖y −XT bT ‖

2 + λ ‖bT ‖1.
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This (reduced) solution β̂T (λ) is independent from the other columns XT
(here and below T is the complement of T ). Now take λ to be of the same
magnitude as M so that roughly half of the signal variables are selected.
The KKT conditions state that

−λ1 ≤X>T (y −XT β̂T ) ≤ λ1,

where 1 is the vectors of all ones. Note that if |X>j (y −XT β̂T )| ≤ λ for all

j ∈ T , then extending β̂T (λ) with zeros would be the solution to the full
Lasso problem—with all variables included as potential predictors—since it
would obey the KKT conditions for the full problem. A first simple fact is
this: for j ∈ T , if

(3.2) |X>j (y −XT β̂T )| > λ,

then Xj must be selected by the incremental Lasso with design variables
indexed by T ∪ {j}. Now we make an assumption which is heuristically
reasonable: any j obeying (3.2) has a reasonable chance to be selected in the
full Lasso problem with the same λ (by this, we mean with some probability
bounded away from zero). We argue in favor of this heuristic later.

Following our heuristic, we would need to argue that (3.2) holds for a
number of variables in T linear in p. Write

X>T (y −XT β̂T ) = X>T (XT βT −XT β̂T ) = λgT ,

where gT is a subgradient of the `1 norm at β̂T . Hence, βT −β̂T = λ(X>T XT )−1gT
and

XT (βT − β̂T ) = λXT (X>T XT )−1gT .

Since δ > ε,XT (X>T XT )−1 has a smallest singular value bounded away from
zero (sinceXT is a fixed random matrix with more rows than columns). Now
because we make about half discoveries, the subgradient takes on the value
one (in magnitude) at about ε · p/2 times. Hence, with high probability,

‖XT (βT − β̂T )‖ ≥ λ · c0 · ‖gT ‖ ≥ λ · c1 · p

for some constants c0, c1 depending on ε and δ.
Now we use the fact that β̂T (λ) is independent of XT . For any j /∈ T , it

follows that
X>j (y −XT β̂T ) = X>j XT (βT − β̂T )

is conditionally normally distributed with mean zero and variance

‖XT (βT − β̂T )‖2

n
≥ c1λ

2p

n
= c2 · λ2.
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In conclusion, the probability that X>j (y−XT β̂T ) has absolute value larger
than λ is bounded away from 0. Since there are (1 − ε)p such j’s, their
expected number is linear in p. This implies that by the time half of the true
variables are selected, we already have a non-vanishing FDP. Note that when
|T | is not linear in p but smaller, e.g. |T | ≤ c0n/ log p for some sufficiently
small constant c0, the variance is much smaller because the estimation error
‖XT (βT − β̂T )‖2 is much lower, and this phenomenon does not occur.

Returning to our heuristic, we make things simpler by considering alter-
natives: (a) if very few extra variables in T were selected by the full Lasso,
then the value of the prediction Xβ̂ would presumably be close to that ob-
tained from the reduced model. In other words, the residuals y −Xβ̂ from
the full problem should not differ much from those in the reduced prob-
lem. Hence, for any j obeying (3.2), Xj would have a high correlation with

y−Xβ̂. Thus this correlation has a good chance to be close to λ, or actually
be equal to λ. Equivalently, Xj would likely be selected by the full Lasso
problem. (b) If on the other hand, the number of variables selected from T
by the full Lasso were a sizeable proportion of |T |, we would have lots of
false discoveries, which is our claim.

In a more rigorous way, AMP claims that under our working hypothesis,
the Lasso estimates β̂j(λ) are, in a certain sense, asymptotically distributed
as ηατ (βj+τWj) for most j and Wj ’s independently drawn fromN (0, 1). The
positive constants α and τ are uniquely determined by a pair of nonlinear
equations parameterized by ε, δ,Π, σ2, and λ. Suppose as before that all the
nonzero coefficients of β are large in magnitude, say they are all equal to M .
When about half of them appear on the path, we have that λ is just about
equal to M . A consequence of the AMP equations is that τ is also of this
order of magnitude. Hence, under the null we have that (βj + τWj)/M ∼
N (0, (τ/M)2) while under the alternative, it is distributed as N (1, (τ/M)2).
Because, τ/M is bounded away from zero, we see that false discoveries are
bound to happen.

Variants of the Lasso and other `1-penalized methods, including `1-penalized
logistic regression and the Dantzig selector, also suffer from this “shrinkage
to noise” issue.

4. Discussion. We have evidenced a clear trade-off between false and
true positive rates under the assumption that the design matrix has i.i.d. Gaus-
sian entries. It is likely that there would be extensions of this result to designs
with general i.i.d. sub-Gaussian entries as strong evidence suggests that the
AMP theory may be valid for such larger classes, see [1]. It might also be
of interest to study the Lasso trade-off diagram under correlated random
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designs.
As we previously mentioned in the introduction, a copious body of litera-

ture considers the Lasso support recovery under Gaussian random designs,
where the sparsity of the signal is often assumed to be sub-linear in the ambi-
ent dimension p. Recall that if all the nonzero signal components have mag-
nitudes at least cσ

√
2 log p for some unspecified numerical constant c (which

would have to exceed one), the results from [35] conclude that, asymptoti-
cally, a sample size of n ≥ (2 + o(1))k log p is both necessary and sufficient
for the Lasso to obtain perfect support recovery. What does these results say
for finite values of n and p? Figure 6 demonstrates the performance of the
Lasso under a moderately large 250× 1000 random Gaussian design. Here,
we consider a very sparse signal, where only k = 18 regression coefficients
are nonzero, β1 = · · · = β18 = 2.5

√
2 log p ≈ 9.3, β19 = · · · = β1000 = 0, and

the noise variance is σ2 = 1. Since k = 18 is smaller than n/2 log p and β is
substantially larger than

√
2 log p one might expect that Lasso would recover

the signal support. However, Figure 1 (left) shows that this might not be
the case. We see that the Lasso includes five false discoveries before all true
predictors are included, which leads to an FDP of 21.7% by the time the
power (TPP) reaches 1. Figure 6 (right) summarizes the outcomes from 500
independent experiments, and shows that the average FDP reaches 13.4%
when TPP = 1. With these dimensions, perfect recovery is not guaranteed
even in the case of ‘infinitely’ large signals (no noise). In this case, perfect
recovery occurs in only 75% of all replicates and the averaged FDP at the
point of full power is equal to 1.7%, which almost perfectly agrees with the
boundary FDP provided in Theorem 2.1. Thus, quite surprisingly, our re-
sults obtained under a linear sparsity regime apply to sparser regimes, and
might prove useful across a wide range of sparsity levels.

Of concern in this paper are statistical properties regarding the number
of true and false discoveries along the Lasso path but it would also be in-
teresting to study perhaps finer questions such as this: when does the first
noise variable get selected? Consider Figure 7: there, n = p = 1000, σ2 = 1,
β1 = · · · = βk = 50 (very large SNR) and k varies from 5 to 150. In the very
low sparsity regime, all the signal variables are selected before any noise
variable. When the number k of signals increases we observe early false dis-
coveries, which may occur for values of k smaller than n/(2 log p). However,
the average rank of the first false discovery is substantially smaller than k
only after k exceeds n/(2 log p). Then it keeps on decreasing as k continues
to increase, a phenomenon not explained by any result we are aware of. In
the linear sparsity regime, it would be interesting to derive a prediction for
the average time of the first false entry, at least in the noiseless case.
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Fig 6: Simulation setup: n = 250, p = 1000, β1 = · · · = β18 =
2.5
√

2 log p ≈ 9.3 (the other coefficients all vanish), σ2 = 1 (with
noise) and σ2 = 0 (no noise). Left: noisy case. True positive and false
positive rates along a single realization of the Lasso path. The least
squares path is obtained by ordering least squares estimates from a
model including the first 50 variables selected by the Lasso. Right:
mean FDP as a function of TPP. The mean FDP was obtained by
averaging over 500 independent trials.

Methods that are computationally efficient and also enjoy good model
performance in the linear sparsity regime would be highly desirable. (The
Lasso and the `0 method each enjoys one property but not the other.) While
it is beyond our scope to address this problem, we conclude the discussion
by considering marginal regression, a technique widely used in practice and
not computationally demanding. A simple analysis shows that marginal re-
gression suffers from the same issue as the Lasso under our working hy-
pothesis. To show this, examine the noiseless case (σ = 0) and assume
β1 = · · · = βk = M for some constant M > 0. It is easy to see that the
marginal statistic X>j y for the jth variable is asymptotically distributed as

N (0, σ̃2), where σ̃ = M
√

(k − 1)/n, if j is a true null and N (M, σ̃2) other-
wise. In the linear sparsity regime, where k/n tends to a constant, the mean
shift M and standard deviation σ̃ have comparable magnitudes. As a result,
nulls and non-nulls are also interspersed on the marginal regression path, so
that we would have either high FDR or low power.
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SUPPLEMENTARY MATERIAL

Supplement to “False Discoveries Occur Early on the Lasso
Path”
(; .pdf). The supplementary materials contain proofs of some technical re-
sults in this paper.
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