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A few weeks to review 6 or more papers

e 70% of reviewers in NeurlPS 2016 are
PhD students (Shah 2022)



Trouble at ML/AI conferences

Inconsistency in Conference Peer Review: Revisiting the 2014
NeurIPS Experiment

Corinna Cortes* and Neil D. Lawrence!

*Google Research, New York
fComputer Lab, University of Cambridge

September 22, 2021

Abstract

In this paper we revisit the 2014 NeurlPS experiment that examined inconsistency in conference peer
review. We determine that 50% of the variation in reviewer quality scores was subjective in origin.
Further, with seven years passing since the experiment we find that for accepted papers, there is no
correlation between guality scores and impact of the paper as measured as a function of citation count.

We trace the fate of rejected papers, recovering where these papers were eventually published. For these
papers we find a correlation between quality scores and impact. We conclude that the reviewing process
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https://www.reddit.com » MachineLearning » comments

[D] ICML 2022 Outstanding Paper Awards : r/MachineLearning

Jul 21, 2022 — Even if the paper is perfect, the controversy has probably already done
enormous damage, both to the paper and to the wellbeing of the authors.

ICML 2022 papers with affiliations [D] : /MachinelLearning May 23, 2022
[R] Highlights for every ICML 2022 paper : r/MachineLearning Jul 17, 2022
[D] ICML 2022 Paper Reviews : r/MachineLearning - Reddit Apr 6, 2022
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What does the community think?

Weijie Su @weijied444 - Sep 27

b Collecting data for a talk (thx!) In CS conference peer review, do you find
reviews helpful in *improving” your submissions?

et

Often helpful 9.7%
Sometimes helpful 54.8%
Rarely helpful 35.5%
Never 0%

62 votes - Final results

Weijie Su @weijie444 - Sep 27

Collecting more data for a talk (thx!!!) In CS conference peer review, did

you see reviewers who knew about your submissions even better than you
do (in an overall sense)?

Often 3.4%
Sometimes 11.6%
Rarely 55.1%
Never 29.9%

147 votes - Final results
6
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Self evaluation? A bit ironic

CAN I TRUST YOU

WhCl'I"s 1-/1
Paper.s? € qUCl/I.'I'y of Vour

they are all
super good!
* Unfortunately, for most questions, the owner QCQEE.!E!}!&EZQU?M"!.'AZ&

won’t be truthful

 |esson learned from the 737 Max crashes (FAA
and Boeing)

* Related to property elicitation
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An owner and an appraiser

Bob does
NOT know R

Alice owns many items Alice does NOT Bob estimates the underlying quality

observe y

» Alice knows about the true/underlying ratings R, ..., R,

 Bob observes review ratings y; = R; + z;, where 7, ..., Z, are noise variables

(" exogenous
9




Problem statement

1 Can Bob better estimate the ground truth by asking Alice questions?

10



Problem statement

1 Can Bob better estimate the ground truth by asking Alice questions?

at least ‘better
than the ‘raw’ estimator y

10



Problem statement

1 Can Bob better estimate the ground truth by asking Alice questions?

at least 'better . o
than the 'raw’ estimat without "asking”, Bob can
an the 'raw’ estimator y do MLE.

10



Problem statement

1 Can Bob better estimate the ground truth by asking Alice questions?

at least 'better . o
than the 'raw’ estimat without "asking”, Bob can
an the 'raw’ estimator y do MLE.

1. How should Bob formulate his questions?

10



Problem statement

1 Can Bob better estimate the ground truth by asking Alice questions?

N N

at least 'better . o
than the 'raw’ estimat without "asking”, Bob can
an the 'raw’ estimator y do MLE.

1. How should Bob formulate his questions?

2. How can Bob incorporate the info into estimation?

10



Problem statement

1 Can Bob better estimate the ground truth by asking Alice questions?

at least 'better . o
than the 'raw’ estimator without "asking”, Bob can
Y Y do MLE..

1. How should Bob formulate his questions?

2. How can Bob incorporate the info into estimation?

3. What is Alice’s goal? What does she want?

10
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1. & =1{S5,9,,...,5, } is a (knowledge) partition of R". Bob asks which
knowledge element $ from & contains R = (R, R,, ..., R))

Iy —rl* |

2. Given Alice’s answer S, Bob solves R from:
resS |

the simplest way to incorporate the
constraint r € §?

shape-
restricted regression; or
simply projection

11




Problem setup

1. & =1{S5,9,,...,5, } is a (knowledge) partition of R". Bob asks which
knowledge element $ from & contains R = (R, R,, ..., R))

2. Given Alice’s answer S, Bob solves R from:
res

3. Alice strives to maximize her expected utility [E [U(IAQI) + -0 + U(IAin)]

by reporting any knowledge element, truthfully or not

11
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Knowledge partition & is fixed at the beginning

r

e & ={{x}:x € R"}: what’s R exactly (most fine-grained)?

are you in the US?

e & ={{x:minx; > 0}, {x: minx; <0} }: are all entries of R
nonnegative”?

e & = {{Xx:Xx;isthelargest} : i = 1,...,n}: which entry of R is the largest?
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Examples of knowledge partitions

2

Knowledge partition & is fixed at the beginning

e« & ={{x} :x € R"}: what’s R exactly (most fine—graine)’?

e & ={{x:minx; > 0}, {x: minx; <0} }: are all entries of R
nonnegative”?

e & = {{X :x; isthelargest} : i = 1,...,n}: which entry of R is the largest?

12



Truthfulness improves estimation

Suppose S is convex and contains R. Bob improves estimation:
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» Intuitively, the smaller S is, the better estimation Bob would get
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Truthfulness improves estimation

Suppose S is convex and contains R. Bob improves estimation:
{ 2 9
-HRS RH -Hy RH

e Elly — RH2 corresponds to the trivial knowledge partition {R" }

» Intuitively, the smaller S is, the better estimation Bob would get

Let zZ;’s be i.i.d. normally distributed. Let cone S, be a subset of cone ;. If R € S,

“||Rs, — R||? “||Rs, — R||?
lim sup———— <1, lim sup———
60 -I\Rsl—Rllz 600 ‘HRsl—RHZ

13
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* All knowledge elements are as small as possible, allowing
Bob to better narrow down the search space

how can we let Alice into Wonderland?
need assumptions!

my papers, students and
everything of mine are the best
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Assumptions

no need to know R
exactly

1. Alice has\sufficient knowledge to determine which knowledge element

contains R .
can be relaxed to hot necessarlly\
exchangeability mean zero -

2. The noise terms z;, ..., Z, are L.i.d. draws from a probability distribution

3. Alice’s utility function U is a (nhondecreasing) convex function

can be non-decomposable (Schur
convex) and heterogeneous

15
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2. Diamond value varies drastically with grades

N«
:‘;‘ﬂ./ “'i \ \!-WA y
SN e N, Ny
SRE. | W | e
::/4'&\»‘ ;/,}» AW
v Y v -
- "
"t't " .';.N
0 1 2 3 4 5 6 7 8 9 10
| Very Very Very _
Flawless/IF Slightly Included Slightly Included Slightly Included Included
| Flawless/IF VVS VVS2 VS VS2 Sh Sl2 h I2 I3

16



On the convexity assumption

Alice Is rational and wants to maximize

why U(so so) + U(ouTs’rcmdmg) > 2U(good)7 = lU(IAQI) + -0 + U(ﬁn)]

A’r leas‘r for some appllcaTlons

1. Best paper award > oral presentatlon > spotllght > poster

2. Diamond value varies drastically with grades
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Truthfulness implies palrwise comparisons

Theorem (S 2022)
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Truthfulness implies pairwise comparisons

Theorem (S 2022)

If Alice is always truthful then the knowledge partltlon oS’ >75
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must be cut by pairwise-comparison hyperplanes

j — x] = O for some palrs 1 < ]

» Determine which knowledge element contains R via pairwise comparisons

* Questions for Alice must be something like (you can't have your cake and eat
it too)
'Is your 3rd paper better than your 5th paper?’

» Suffice to know g(R;) for (unknown) monotone g (calibration not needed!)
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Will Alice tell the truth?

X
« §[¢

X

* Which entry of R is the largest? maYbe (Yes, as we'll see soon)
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| Bob ask what's the value of R, — R,? 3

.+ Under 1y — 1, = — ) + (=)
r.1 .er. =1 =00,y — )"+ (0= np)is trust me, R; — R, = o0
minimized when

B o0 B o0
1 — A o\ — 7/ : o o
2 2 min =1+ (= 1)
* For a generic convex function, e.g., S 1. ry— 1, = 00

U(x) = max(0,x), this gives UR,) + UR,) = oo
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what's the most fine-grained truthful
knowledge partition?
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Candidate: all n! rankings

The most fine-grained knowledge partition is the collection
of isotonic cones {Xx : X, > X0 > =+ 2 Xy} for all

permutations wof 1,...,n
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Candidate: all n! rankings

N
| y

The most fine-grained knowledge partition Is the collection
of isotonic cones {x : Xo(1) 2 Xp2) 2 0 2 xﬂ(n)} for aII

-y .
. ; . a2
s ' \ : v
: \ =
3 —
1 \ -
3 o
b 4 : -
- o | o
> (e ’

permutations wof 1,...,n

* Alice is asked to provide a ranking of her items

o |f a knowledge partition & is truthful, then it is coarser than
rankings, with cardinality no more than n'!

« & can be generated by rankings
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Our dream would come true if...

.« Alice is truthful, so the ground truth R is really in S
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Our dream would come true if...

.« Alice is truthful, so the ground truth R is really in S
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1 Alice provides a ranking &

2 Bob finds the solution R(?Z') to the optimization problem:

- 2
min - ly — 7|
r
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Our dream would come true if...

.+ Alice is truthful, so the ground truth R is really in S

i o
o a7
81 z -— -';T.L
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. ); W © wis 5;:;‘
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i “ee : Y SO
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|

1 Alice provides a ranking

2 Bob finds the solution R(il') to the optimization problem:

- 2
min |y —r|]
r

this is just isotonic S.t.

22
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An example

A friend of mine submitted 6 papers to NeurlPS 2021

Ranking Score Decision |lsotonic score
1 5.5 Reject 6.25
2 14 Accept 6.25
3 5 Reject 5.92
4 0.7/5 Accept 5.92
5 0 Accept 5.92
6 4.67 Reject 4.67

23



Alice (and Bob) in the Wonderland!

Theorem (S. 2021)

The Isotonic Mechanism is truthful: Alice’s optimal strategy IS to report the
round—truth ranking 7> satisfying Rﬂ*(l) > Rﬂ*(z) . > Rﬂ*(n) ‘
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Theorem (S. 2021)

The Isotonic Mechanism is truthful: Alice’s optimal strategy IS to report the
ground-truth ranking n*satisfying R .y > R 2y > =+ > R«

o Suffice to know a monotone transformation of R

* Convex utility is necessary for truthfulness

» Combining the previous theorem, this gives... e ESJ;(II(:HIMGLAIJ\'!GU
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Theorem (S. 2022)

The optimal truthful knowledge partition is n!|
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Alice (and Bob) in the Wonderland!

Theorem (S. 2021)

The Isotonic Mechanism is truthful: Alice’s optimal strategy IS to report the

ground-truth ranking r*satisfying Ry > R ) > -+ > Rﬂ*(n)

1:2 AN

Theorem (S. 2022)

The optimal truthful knowledge partition is n!’

(convex) isotonic cones
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Proof ideas
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Proof ideas
WLOG, assume R, > -+ > R ,son*(i) = i
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Solution denoted Proj(y) = Proj(R + z)
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Proof ideas
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VS

/ /
;/'12 coe Zrn
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Proof ideas

lzoR+z—r?]
VS

’ s.t. rp > > 1

Suffice to show U(Proj(R + z)) > U(Proj(w o R + 7))

Observation (given k| > --- > R)

Let a—R+z and b=n-R+7z. Then
K

Z a. > Z b, for all i with equality when 1 = n
=1 =1 ,,
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Proof ideas

min lzeR+z—1|?

VS

/ /
;/'12 coe Zrn

Suffice to show U(Proj(R + z)) > U(Proj(w o R + 7))

Observation (given k| > --- > R)

Leta=R+7 and b=n-R+7z. Th 1 Different from majorization: Z Uiy 2 Z V(i)

s k

Z a, > Z bl- for all 1 with equality when 1 = n where order statistics 1, > ..o >y
i=1 i=1 |
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Proof ideas

Observation (glven R1 - > R))

Let d—R+Z and b_JZ'OR-l-Z Then

' Z Z b, for all i with equality when i = n |

Lemma (S. 2021)
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Proof ideas

Observation (glven R1 - > R))

Let a—R+z and b_JZ'OR-l-Z Then

' Z P Z b, for all i with equality when i = n |

Lemma (S. 2021) Hardy—thtIewood Polya mequallty

If iU majorizes v, then Uu) > U(v)
foranyconvexU |
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Intuition as to why true ranking maximizes utility?

PAVA algorithm for isotonic regression (Kruskal 1964)
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mean-preserving Z R = Z V:

averaging reduces
convex sum!

) If R, > R, (an outstanding paper and a junk

' paper)
If Alice is honest: oral presentation + rejection

If Alice lies: two accepted posters




When is the gain significant?

Total variation TV(R) := max R; — min R,

Proposition (Zhang 2002)

Letting noise sd o and V be fixed, we have

SU. =||[R(7*) — R||? |
% <7.5625 + o, (1)
n3o3V3 |

0.4096 + 0,(1) <
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When is the gain significant?

Total variation TV(R) := max R; — min R,

Proposition (Zhang 2002)

Letting noise sd o and V be fixed, we have

| SUPR: "Hﬁ(ﬂ*) - R|° |
0.4096 + 0,(1) < ———==— = 7~ <75625+ 0,(1)

4_ .2
n3o3V3 |

* [he raw observation y has risk no’

* Gain is more significant when 7 is large and o is large too
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Ruslan Salakhutdinoy N 40.00%
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Tomas Pfister NI 11.11%
Jun Wang M 22.22%
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Jiashi Feng NN 55.56%
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Max Welling NEEaaa———— 62.50%
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Eunho Yang M 50.00%
Xiao Wang NS 37.50%
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Bo Li
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Examples of non-truthful knowledge partitions

Non-existence when the dimension n = 1

Other than the trivial knowledge partition, there does not exist a
truthful knowledge partltlon whenn = 1

A counterexample when n > 3

Iet CS> — {Sl’SZ}’ Whel’e Sl — {x . Xl Z x2 Z cee Z xn} ’
and S, = R"\S}, and R = (ne, (n — 1), ...,2¢,€) € §,
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T p
3. But not required to make any within-subset comparisons
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Alice has n, items In grade q. Items of different grades have very

different values, but Alice cannot determine for those of the same
grade apoF

Examples

. = =1, = 1 and n, = n — p+1 Alice ranks onlythetop
- p—1items

' ng = -+ =n;y=nl/ 10 which items are the top 10%, which are
the next top 10%, ...?

o n, = n, = n/2: which half are better than the other? |
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Alice remains truthful

xZ/\ 372/\

Coarse ranking

Report ordered subsets [}, ..., I, of \
sizes ny, ..., n, such that /}‘ - P .

o,
K2 M2 28 7 W

nlzl,n2:2 n1:2,n2:1
best among your 3 papers?  worst among your 3 papers?

Theorem (S. 2021)

f, Alice maximizes her utility if she truthfully reports the coarse ranking ,

 “Which is your best paper” is truthful: n; = 1, n, =n — 1

e Convex, so better estimation
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Isotonic Mechanism with exponential family

Joint work with Jianging Fan and Yuling Yan

Let y; ~ fy+, Where fj(y) = e =bOp ()
* Variance of ratings depends on the mean

>

Alice is asked to provide a ranking x:

min —0.y;. + b(0)) min (v; — 1)’
S.t. H]t(l) > a0 > Hﬂ(n) S.1. Iuﬂ(l) > eee > //tn_(n)

» u =[E,Y = b'(0) (Barlow and Brunk 1972)
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Truthfulness and optimality

min n — 1)?

Score y; ~ f@-*’ pdf f(y) = eV—bOp(y) 0 lzzl (Vi = 1)
S.1. K1) > 0 > Moo

Theorem (Yan, S., and Fan 2023)

'I' The Isotonic Mechanism for exponential family observations is truthful 1

*I* If a knowledge partition is truthful and cut by hyperplanes, it must be
| cut by pairwise comparisons |

* Ranking remains optimal in this sense

» Implementation doesn’t require knowing b(6) and A(y)!
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If you’re gonna get a best paper award...

« Great if your best paper receives the award otherwise...

e Controversies on the ICML 2022 outstanding paper awards

Vitaly ™ Feldman
@vitalyFM

= Sorry to rain on this parade but from a quick look at
this paper | see that the analysis of privacy guarantees
makes no sense: the authors apparently do not realize  submitted on 29 sep 2022]

that their (unsubstantiated) assumption implies No Free Lunch in "Privacy for Free: How does Dataset Condensation Help Privacy"”
stronger privacy guarantees then what they prove from  nicholas Carlini, vitaly Feldman, Milad Nasr
it.

New methods designed to preserve data privacy require careful scrutiny. lMailure to preserve privacy is hard to detect, and yet can lead to catastrophic results when a system

implementing a * " privacy-preserving” method is attacked. A recent work selected for an Outstanding Paper Award at ICML 2022 (Dong et al., 2022) claims that dataset

‘D L. = Lva @lingjuan_lyu - Jul 19 condensation (DC) significantly improves data privacy when training machine learning models. This claim is supported by theoretical analysis of a specific dataset condensation

#icml2022 #sony #PPML So happy to share that our Sony Al PPML team's technique and an empirical evaluation of resistance to some existing membership inference attacks.
paper "Privacy for Free: How does Dataset Condensation Help Privacy?" won an In this note we examine the claims in the work of Dong et al. (2022) and describe mzjor faws in the empirical evaluation of the method and its theoretical analysis. These flaws
Outstanding Paper Award from ICML'22. Congrats to my team and collaborator! imply that their work does not provide statistically significant evidence that DC improves the privacy of training ML models over a naive baseline. Moreover, previously
published results show that DP-SCD, the standard approach to privacy preserving ML, simultancously gives better accuracy and achicves a (provably) lower membership attack
Check out our work here: arxiv.org/abs/2206.00240 success rate.
Oral

Privacy for Free: How does Dataset Condensation Help Privacy?

Room 318 - 320

Outstanding Paper
N

37



True-grade-dependent utility

Heterogeneity in utility U(R) := Z U(R; R))
=1

' . U(x; R) is convex in its first argument

dU(x;R) dU(x;R') |
—— > ————wheneverR > R’ |

i
/ /)

] 2
[
.

q
%

» Examples: U(x; R) = g,(R)h{(x) + g,(R)h,(x) + -+ + g; (R)h;(x) with
nondecreasing g, ..., &7 = 0 and nondecreasing convex Ay, ..., h;
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True-grade-dependent utility

Heterogeneity in utility U(R) := Z U(R; R))
=1
1. U(x; R) is convex in its first argument

dU(x;R) dU(x;R

2. ———— > ———— whenever R > R’ s

» Examples: U(x; R) = g,(R)h{(x) + g,(R)h,(x) + -+ + g; (R)h;(x) with
nondecreasing g, ..., &7 = 0 and nondecreasing convex Ay, ..., h;

Theorem (S 2022)

The Isotonlc Mechanlsm remalns truthful "
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Let’s engineer utility

 Acceptance doesn’t mean much (2660
AR accepted at NeurlPS 2022!)
il " S« Highlight a few of the accepted through
A multiple channels

* High ratings (on OpenReview) continue to give
positive impression

N  Ask someone like Elon Musk for help
N review rating

(-

SN Elon Musk &
Ny AN

=\ @elonmusk

* Very low ratings (on OpenReview) can be Weijie got a good ideal! I'll offer all neurips

embarrassing authors $100*RA2 if they provide rankings of their papers.
° Smelttlng many jUnk papeI’S isn,t a 6:06 PM - May 12, 2024 - Twitter for iPhone
good idea

71.3K Retweets 47.3K Quote Tweets 444.7K Likes
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- C @& openrank.cc h & 9 * v @ ROCIAXx»x=0@

i Tools [ Webs [ Teaching @ UPennProxy [ Publsh orPerish [ Sources [ Toread B Translete P Gmai Econ & Google » [ Other Bookma

e The lsotonic Mechanism was e
experimented this January at
ICML 2023, which received

6 5 3 8 This experiment is based on the isctonic mechaniem introduced in two papers [1, 2]. This mechanism takes as input the ranking provided by the authors
p a p e rs and review ratings and outouts modified review ratirgs that are consistent with the author-provided rank ng. Undar certain assumptions, the authors would
be better off truthfully reporting the rankings or partial rankings to the best of their <nowledge if the modified review ratings are usad to inform decision-
making in an appropriate manner, and therefore, the medified revieaw ratings wou'd be mare accurate than the raw ratings.

About the OpenRank Experiment

Conference-Specific Details

 \We developed a website
ICML 2023
(O p e n ra n k _ C C) fO r t h i S p rOj eCt To be 1C0% clear, this year the modified review ratings wll not be used in dacision-making procasses. The purpese of this experimert is to assass the

actual effectiveness of th s mechanism. Our analysis will be based on the ranking data, as well as the review ratings (numeric only) and final decisions
obtained from OpenRaview, with all personal identifying informatior removed. Our goal is to understand how reliable the author-providec rankirgs or
pairwise comparsons zre, to investigate if the modified ratings accurately reflact the qualty of the sunmissiors, and specifically, to investigate if a
significant discrepancy batweer the modified and original ratings suggests inadequate review quality.

Tne ultimate goal of this expariment is to assess the possibility of combining authors’ own opinions and reviewers'’ ratings and comments for Deer review in
future conferences. As the number of submissions explodes while the number of experienced reviewers is limitec, relying on reviewers alone for peer
revew becomes increasingly challenging in large machine leaming conferences. On the other hand, the authors often have their own informat.on about
their submission quality that can be complementary to that of the reviewers, and the question 's, of course, how to truthfully elicit infermation from the
authors. The isotonic mechanism is an initiative to incorporate author-assisted in‘formation nto peer review. Potential improvements and alternatives are
cartainly possible.

Privacy and confidentiality are at the heart of the desigr of this experiment. We have taken the following strict steps to preserva them:

1. The rankings wll not be sharad with co-authors, reviawers, ACs, SACs, or PCs. Your responses will not affact the review process in any sense.

2. Only the SHA-256 hashad values, but not the original values, cf both the submissicn |IDs and author 1Ds will be preserved for statistical analysss. [he
axperiment team will not analyze the data until the review prccess of ICML 2023 is done.

3. Only agoregaied statistics will be released for acacemic purposes only, with explicit approval by the ICML 2023 PCs

4. All deta collectec from this experiment except for the aggregated stalistics published in the paoeris) will be campletely deleted by December 31,
2024,

This axperiment was designed by Jiayao Zhang, Natalie Collna, Aarcn Foth, Xiao-Li Meng, and Wejjie Su. Flease dc rot hesitate 1o reach out to us if ycu
have any questicns or concerns.

41



Ranking data of ICML
o

 [he Isotonic Mechanism was
experimented this January at

ICML 2023, which received
6538 papers

 We developed a website
(openrank.cc) for this project

: D & :

OpenReview =/ S € i

To: Su, Weljie hu 1/26/2023 4:33 PM
Dear Weijie:

We are asking all researchers who submitted papers to ICML 2023 to participate in a very short survey until
February 10 AQE. The goal of this survey is to assess the relationship between three things: an author's
perceptions of the relative quality of their papers, the reviews of their papers, and the research impact of these
papers. The collected data will be analyzed to inform the improvement of peer review in large machine learning
conferences.

This survey is conducted through a collabaration between OpenReview and OpenRank, an open survey
platform. Please visit the following link to respond to the survey:

https://openrank.cc/rank/c643bbaf-c408-4960-8d4e-5d257d01073c¢

We recognize the sensitivity of this information and will keep your responses fully confidential from your co-
authors, reviewers, ACs, and SACs. The rankings are purely meant to evaluate a mechanism for improving peer
review [1, 2] and we emphasize that they will nof affect decision-making at all. See About the Experiment and
Privacy Policy pages from the link sent above for the steps taken to ensure full confidentiality.

This experiment has been approved by the UPenn IRB and was designed in collaboration with Jiayao Zhang,
Natalie Collina, Aaron Roth, Xiao-Li Meng, and Weijie Su.

ICML 2023 Program Chairs
Emma Brunskill, Kyunghyun Cho, and Barbara Engelhardt
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OpenRank.cc

| | | ]
o I h e I S Ot O n I C M eC h a n I S I I l WaS Pleasa ran< your submissions according te your perception of their level of sciantifc contributicn. Use the handle () tc drag your submissions to rank them [r2nk 1 is the bast). You may

d/so choose to complete the optional survey questions below. Click the Submit button to save your response. You will see a creen banner once your response is suecessully saved, You
san medify your respensa an unl mited number of times before the survey deadling, but anly the as: rasaonss wll ba recarded. Note that
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Very likely v
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Will you review for ICML 20237

22, when decisions were made \,
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Discrepancy between reviews and author options
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Discrepancy between reviews and author options

Estimated probabillity that
lowest ranked paper will
be rated higher than
highest ranked paper
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Discrepancy between reviews and author options
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The bitter side of social media

@ icml.cc

— A $login

OpenReview and Rankings:

This year we will use OpenReview and we will require
that authors of multiple submissions, upon submission
confirmation, submit a rank ordering of their papers
from their own perspective. For this year we will only
use such information in extreme situations to help
inform acceptance decisions, and potentially for
awards.
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The bitter side of social media

==l

o |1 Authors review their own papers!

é "% khalid Oublal @oublal_kh...-12/13/22
Groundbreaking “t-

@ icml.cc
3 Gautam Kamath @th... - 12/13/22

— A ) Welellp Very interesting! #ICML2023 wiill
experiment with letting authors review
their own papers ()

OpenReview and Rankings:

This year we will use OpenReview and we will require Here's the paper by @weijie444,

that authors of multiple submissions, upon submission which uses authors' rankings of their
confirmation, submit a rank ordering of their papers own papers to improve reviewing
from their own perspective. For this year we will only outcomes. It incentivizes authors to
use such information in extreme situations to help tell the truth. arxiv.org/abs/

inform acceptance decisions, and potentially for 2110.14802
awards. Show this thread
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. . . letting authors review their own papers
Very interesting! #ICML2023 will
experiment with letting authors review 3 Gautam Kamath
their own papers ()

é ~ %=, khalid Oublal @oublal kh...-12/13/22

OpenReVieW and Rankings: Very interesting! #/CML2023 will
: experiment with letting authors review

This year we will use OpenReview and we will require Here's the paper by @weijie444, their own papers &
that authors of multiple submissions, upon submission which uses authors' rankings of their Hﬁre;s the pap?r by \klwllfl

: . 2 : : - . - which uses authors' rankings of their
confirmation, submit a rank ordering of their papers own papers t? improve reviewing ST BEPS I RBMEIoYE teiawine
from their own perspective. For this year we will only outcomes. It incentivizes authors to outcomes. It incentivizes authors to
use such information in extreme situations to help tell the truth. arxiv.org/abs/ tf': fhftr:f_h s e
inform acceptance decisions, and potentially for 2110.14802
awards. Show this thread
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The bitter side of social media

-I| \

|} Authors review their own papers!

. Groundbreaking “% B ICML2023 8 it A E
& icml.cc i S X?

@ GaUtam Ka math @th eer 12/1 3/22 Very interesting! #ICML2023 will experiment with

. . . letting authors review their own papers
Very interesting! #ICML2023 will
experiment with letting authors review 3 Gautam Kamath
their own papers ()

é %, khalid Oublal @oublal kh...-12/13/22

OpenReview and Rankings: Very interesting! #/C\M12023 wil
experiment with letting authors review

This year we will use OpenReview and we will require Here's the paper by @weijie444, their own papers (2
that authors of multiple submissions, upon submission which uses authors' rankings of their Here's the paper by Gvieijiedd4,
confirmation, submit a rank ordering of their papers own papers to improve reviewing :\2:;:;:;atzt::sofen:zsi‘zi?:g e
from their own perspective. For this year, we seek this outcomes. It incentivizes authors to outcomes. It incentivizes authors to
information to assess consistency of self-perception tell the truth. arxiv.org/abs/ t;': ‘fhft!:th AR
with respect to review outcomes. We will not share 2110.14802 -
rankings with co-authors, reviewers, ACs, or SACs. Show this thread
Rankings will not be used in decision-making ALB®  EFE$A2 COF (PEHENZS)
Drocesses.

60 0. 4.1 A% v BExid
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some rambling thoughts
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Many examples of “you know the best”

#1 player Age 1 Nat. Contract { Market value +
>y :
- Kevin De Bruyne
\ - S y 30 B Jun 30,2025 €90.00m
e | Attacking Midfield
Phil Foden
| _ 22 == Jun 30,2024 €90.00m
Central Midfield
Y Raheem Sterling ==
“ ./ _ 27 Jun 30,2023 €85.00m
Left Winger
Jack Grealish rm?‘ 26 — Jun 30,2027 €30.00m
(2) 0,2027 .
Left Winger ) ‘ i
Y Bernardo Silva
;@v T 27 K Jun 30,2025 €75.00m
P Attacking Midfield
Ruben Dias
@ 25 X Jun 30,2027 €75.00m
Centre-Back
Rodri
. o 25 = Jun 30,2024 €70.00m
Detensive Midfield
Joao Cancelo
el 28 (@ | Jun 30, 2027 €60.00m
Right-Back
Ederson
28 Jun 30, 2026 €50.00m
Goalkeeper . |
Gabriel Jesus
L~ 25 O Jun 30,2023 €50.00m
1 Centre-Forward
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Many examples of “you know the best”

#1 player Age | Nat. Contract | Market value ¢
"y -
-~ Kevin De Bruyne
\ - o y 30 1| Jun 30,2025 €90.00m
é ] Attacking Midfield
Phil Foden
| _ 22 == Jun 30, 2024 €90.00m
Central Midfield
\ Raheem Sterling . —— Jun 30. 2023 €65.00m
| Left Winger - R '
Jack Grealish [ﬂ“j o == Jun 30. 2027 €30.00m
> 0 V,LUZ! .
Left Winger 1 ‘ il
ernardo Silva
27 Ex Jun 30,2025 €75.00m

ttacking Midfield

€75.00m
€70.00m
€60.00m
€50.00m

€50.00m

Player valuation: coach knows his/her players well
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Many examples of “you know the best”

player Age }

S Kevin De Bruyne "
G - 9,

W | Attacking Midfield

’
-

=8 Phil Foden ”3
Central Midfield

Y Raheem Sterling

W s 27
Left Winger

S Jack Grealish |7W<"
Left Winger )

Bernardo Silva
Attacking Midfield

27

Centre-Bac

P Rodri
Joao Cance

-

& Right-Back

Ederson

A

Goalkeeper

Gabriel Jes

=
o
7

HH H &

B CH

Contract {

Jun 30, 2025

Jun 30,2024

Jun 30,2023

Jun 30, 2027

Jun 30, 2025

Market value 4

€90.00m

€30.00m

€35.00m

€80.00m

€75.00m

€75.00m

€70.00m

€60.00m
€50.00m

€50.00m

Player valuation: coach knows his/her players well

Second-hand market: leasing company knows its cars well

46



Many examples of “you know the best”

player Age | Nat. Contract § Market value ¢
S Kevin De Bruyne
\ - o y 30 1| Jun 30,2025 €90.00m
e | Attacking Midfield
Phil Foden
| _ 22 == Jun 30,2024 €90.00m
Central Midfield
Raheem Sterling —
27 Jun 30,2023 €85.00m
Left Winger
s Jack Grealish L]
R 26 Jun 30, 2027 €80.00m
J Sl Left Winger Q‘Rﬂ ‘ il
Bernardo Silva
@- 27 £ Jun 30,2025 €75.00m
Pl Attacking Midfield

Ruben Dias
@ 2027 €75.00m
Centre-Bac

™ R 2024 €70.00
D .00m
‘:"T‘ Detensive M
Joao Cance
2027 €60.00m
Right-Back
Ederson
2026 €50.00m
- Goalkeeper

2023 €50.00m

e-.e-e o o HIM-

abriel Jes
gentre F:r
Player valuation: coach knows his/her players well

Second-hand market: leasing company knows its cars well

Teacher and students; parent company and subsidiary companies; make medical appointments
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An owner-assisted estimation framework

knowledge about groundtruth template of estimators

: » Insider-Assisted
Alice 5

Bob

- >
payoff: utility e payoff: estimation accuracy
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An owner-assisted estimation framework

knowledge about groundtruth template of estimators

: » Insider-Assisted
Alice o

- >
payoff: utility e payoff: estimation accuracy

Bob
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An owner-assisted estimation framework

/7 - \
/ )
| — '

N
how to model "knowing b
about the ground truth"? i

. knowledge about groundtruth> L
Alice Bob

- >
payoff: utility e payoff: estimation accuracy

gl e 1T
¢ LB f
0

P‘ - e
i {

template of estimators
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Another example of ranking + alignment



Another example of ranking + alignment

Isotonic Mechanism is author alignment using ranking
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Another example of ranking + alignment

f\
Isotonic Mechanism is author alignment using ranking B vk

learning to a G year old.

In reinforece Explain rewards...
learmin
age

r:uknishments to
teach..

ChatGP1

Source: OpenAl
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Another example of ranking + alignment
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Isotonic Mechanism is author alignment using ranking B vk

learning to a 6 year old.

ChatGPT generates several outputs with the samej "= =

question/prompt | 2

punigshments to
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ChatGP1

Source: OpenAl
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Another example of ranking + alignment

f\
Isotonic Mechanism is author alignment using ranking o

Explain reinforcement
learning to a 6 year old.

I D @ o
- ChatGPT generates several outputs with the same] == =

question/prompt | [

punigshments to
teach..

.~ Labelers rank the outputs based on human,
. preferences |

ChatGP1

Source: OpenAl
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Another example of ranking + alignment

f\
Isotonic Mechanism is author alignment using ranking o

Explain reinforcement
learning to a G year old.

I D 55 O
~ ChatGPT generates several outputs with the samej "= ==

question/prompt | [

r:uknishments to
teach..

.~ Labelers rank the outputs based on human,
. preferences |

e Authors know about their submissions
better than reviewers

e Humans know about ethics better than Ch;atGPT

machines

Source: OpenAl
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Future work

* Extension to multi-owner settings
* Relax convexity assumption

 Other use cases”? Recommender systems where an influencer submits
multiple videos to TikTok
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Multiple owners

Joint work with Jibang Wu and Haifeng Xu

e n items shared by m owners with the same
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 Multiple Isotonic Mechanism: final estimator is

|
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Multiple owners

Joint work with Jibang Wu and Haifeng Xu

e n items shared by m owners with the same

ground-truth ranking
 Multiple Isotonic I\/Iechanism: final estimator is

_ZRJ

Theorem (S Wu and Xu 2023)

f All owners reporting the truth is a Nash equilibrium

in the multiple-owner Isotonic Mechanism

* Future work: model probabilistic rankings
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Other reasons for using the Isotonic Mechanism
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Other reasons for using the Isotonic Mechanism

* Quota of accepted papers: it’s really about comparisons
 Conference papers are easier to compare than journal papers

* Even if the utility is non-convex, it might still be truthful in some cases
(e.g., concerning only the highest rating for best paper awards)

 Most people are not adversarial
 Can use it ‘softly’: only SACs or above know the adjusted ratings
 Might discourage guest authorship

» Current system not working well (e.g., controversies on the ICML 2022
outstanding paper awards)
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