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• A few weeks to review 6 or more papers


• 70% of reviewers in NeurIPS 2016 are 
PhD students (Shah 2022)
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Knowing yourself is the 
beginning of all wisdom
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Self evaluation? A bit ironic

• Unfortunately, for most questions, the owner 
won’t be truthful


• Lesson learned from the 737 Max crashes (FAA 
and Boeing)


• Related to property elicitation

what’s the quality of your 
papers?

they are all 
super good!
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• Alice knows about the true/underlying ratings R1, …, Rn

• Bob observes review ratings , where  are noise variablesyi = Ri + zi z1, …, zn

Alice owns many items Bob estimates the underlying quality

9

Alice does NOT 
observe y

Bob does 
NOT know R

exogenous
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Problem statement

1. How should Bob formulate his questions? 

2. How can Bob incorporate the info into estimation?  

3. What is Alice’s goal? What does she want?                                                                                                                                                                                                                                                                                                                                                                  

Can Bob better estimate the ground truth by asking Alice questions?

10

at least ‘better’ 
than the ‘raw’ estimator y without “asking”, Bob can 

do MLE…
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Problem setup

1.  is a (knowledge) partition of . Bob asks which 
knowledge element  from  contains 
𝒮 = {S1, S2, …, Sm} ℝn

S 𝒮 R = (R1, R2, …, Rn)

2. Given Alice’s answer , Bob solves  from:        S R̂
min

r
∥y − r∥2

 s.t.  r ∈ S

3. Alice strives to maximize her expected utility  

by reporting any knowledge element, truthfully or not                                                                                                                                                                                                                                                                                                                                                                         

𝔼 [U(R̂1) + ⋯ + U(R̂n)]

Model:  yi = Ri + zi
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• : are all entries of  
nonnegative? 
𝒮 = {{x : min xi ≥ 0}, {x : min xi < 0}} R

• : which entry of  is the largest?𝒮 = {{x : xi is the largest} : i = 1,…, n} R

Examples of knowledge partitions
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Knowledge partition  is fixed at the beginning𝒮

which state?



Truthfulness improves estimation
Suppose  is convex and contains . Bob improves estimation: 
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Let ’s be i.i.d. normally distributed. Let cone  be a subset of cone . If , 
    

 

zi S2 S1 R ∈ S2

lim sup
σ→0

𝔼∥R̂S2
− R∥2

𝔼∥R̂S1
− R∥2

≤ 1, lim sup
σ→∞

𝔼∥R̂S2
− R∥2

𝔼∥R̂S1
− R∥2

≤ 1
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(Alice’s) Wonderland

• Alice is truthful, so the ground truth  is really in R S

• All knowledge elements are as small as possible, allowing 
Bob to better narrow down the search space

14

how can we let Alice into Wonderland?

my papers, students and 
everything of mine  are the best 

need assumptions!
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Assumptions
1. Alice has sufficient knowledge to determine which knowledge element 

contains R

2. The noise terms  are i.i.d. draws from a probability distributionz1, …, zn

3. Alice’s utility function  is a (nondecreasing) convex function U

15

can be relaxed to 
exchangeability  

can be non-decomposable (Schur 
convex) and heterogeneous

not necessarily 
mean zero 

no need to know  
exactly  

R        more discussions later
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On the convexity assumption

1. Best paper award  oral presentation  spotlight  poster≫≫ ≫ >

2. Diamond value varies drastically with grades

16

Alice is rational and wants to maximize 

𝔼 [U(R̂1) + ⋯ + U(R̂n)]why ?
At least for some applications

U(so so) + U(outstanding) ≥ 2U(good)

depends on categorization 
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Truthfulness implies pairwise comparisons

• Determine which knowledge element contains  via pairwise comparisonsR

• Questions for Alice must be something like (you can't have your cake and eat 
it too) 
                     ‘Is your 3rd paper better than your 5th paper?’

• Suffice to know  for (unknown) monotone  (calibration not needed!) g(Ri) g

If Alice is always truthful, then the knowledge partition  
must be cut by pairwise-comparison hyperplanes 

 for some pairs 

𝒮

xi − xj = 0 i < j

Theorem (S. 2022)
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Will Alice tell the truth?

18

• What’s  exactly?R

• Are all entries of  nonnegative? R

• What’s the norm of ?R

• Is  larger than ?R1 + 2R2 R3

• Is  at least greater than  by 10?R1 R2

• Which entry of  is the largest?R maybe (Yes, as we’ll see soon)
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r1 − r2 = ∞ (y1 − r1)2 + (y2 − r2)2

R̂1 =
∞
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∞
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• For a generic convex function, e.g., 
, this gives U(x) = max(0,x) U(R̂1) + U(R̂2) = ∞
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Candidate: all  rankings n!
The most fine-grained knowledge partition is the collection 
of isotonic cones  for all 

permutations  of  

{x : xπ(1) ≥ xπ(2) ≥ ⋯ ≥ xπ(n)}
π 1,…, n

• Alice is asked to provide a ranking of her items


• If a knowledge partition  is truthful, then it is coarser than 
rankings, with cardinality no more than 


•  can be generated by rankings

𝒮
n!

𝒮
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Our dream would come true if…
• Alice is truthful, so the ground truth  is really in 


• All knowledge elements  are as small as possible
R S

S

…… true if the Isotonic Mechanism is truthful

1. Alice provides a ranking  


2. Bob finds the solution  to the optimization problem: 

                                                   

π

R̂(π)
min

r
∥y − r∥2

 s.t.  rπ(1) ≥ ⋯ ≥ rπ(n)this is just isotonic 
regression! 
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A friend of mine submitted 6 papers to NeurIPS 2021

Ranking Score Decision Isotonic score

1 5.5 Reject 6.25

2 7 Accept 6.25

3 5 Reject 5.92

4 6.75 Accept 5.92

5 6 Accept 5.92

6 4.67 Reject 4.67
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• Suffice to know a monotone transformation of 


• Convex utility is necessary for truthfulness


• Combining the previous theorem, this gives…

R



Alice (and Bob) in the Wonderland!

The Isotonic Mechanism is truthful: Alice’s optimal strategy is to report the 
ground-truth ranking satisfying π⋆ Rπ⋆(1) ≥ Rπ⋆(2) ≥ ⋯ ≥ Rπ⋆(n)

Theorem (S. 2021)

24

The optimal truthful knowledge partition is  
(convex) isotonic cones 

n!

Theorem (S. 2022)



Alice (and Bob) in the Wonderland!

The Isotonic Mechanism is truthful: Alice’s optimal strategy is to report the 
ground-truth ranking satisfying π⋆ Rπ⋆(1) ≥ Rπ⋆(2) ≥ ⋯ ≥ Rπ⋆(n)

Theorem (S. 2021)

24

The optimal truthful knowledge partition is  
(convex) isotonic cones 

n!

Theorem (S. 2022)



Proof ideas 

25

WLOG, assume , so R1 ≥ ⋯ ≥ Rn π⋆(i) = i

min
r

∥y − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

truthful



Proof ideas 

25

WLOG, assume , so R1 ≥ ⋯ ≥ Rn π⋆(i) = i

min
r

∥y − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

y
Proj(y) isotonic cone: {r : r1 ≥ ⋯ ≥ rn}

truthful



Proof ideas 

25

WLOG, assume , so R1 ≥ ⋯ ≥ Rn π⋆(i) = i

min
r

∥y − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

Solution denoted Proj(y) = Proj(R + z)

y
Proj(y) isotonic cone: {r : r1 ≥ ⋯ ≥ rn}

truthful



Proof ideas 

25

WLOG, assume , so R1 ≥ ⋯ ≥ Rn π⋆(i) = i

min
r

∥y − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

min
r

∥y − r∥2

 s.t.  rπ(1) ≥ ⋯ ≥ rπ(n)

Solution denoted Proj(y) = Proj(R + z)

let  be a different rankingπ

VS

truthful



Proof ideas 

25

WLOG, assume , so R1 ≥ ⋯ ≥ Rn π⋆(i) = i

min
r

∥y − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

min
r

∥y − r∥2

 s.t.  rπ(1) ≥ ⋯ ≥ rπ(n)

Solution denoted Proj(y) = Proj(R + z)

min
r

∥π ∘ y − r′ ∥2

 s.t.  r′ 1 ≥ ⋯ ≥ r′ n

let  be a different rankingπ

VS

order the coordinates

truthful



Proof ideas 

25

WLOG, assume , so R1 ≥ ⋯ ≥ Rn π⋆(i) = i

min
r

∥y − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

min
r

∥y − r∥2

 s.t.  rπ(1) ≥ ⋯ ≥ rπ(n)

Solution denoted Proj(y) = Proj(R + z)

min
r

∥π ∘ y − r′ ∥2

 s.t.  r′ 1 ≥ ⋯ ≥ r′ n

let  be a different rankingπ

VS

order the coordinates

π ∘ y = π ∘ R + π ∘ z d= π ∘ R + z

truthful



Proof ideas 

25

WLOG, assume , so R1 ≥ ⋯ ≥ Rn π⋆(i) = i

min
r

∥y − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

min
r

∥y − r∥2

 s.t.  rπ(1) ≥ ⋯ ≥ rπ(n)

Solution denoted Proj(y) = Proj(R + z)

min
r

∥π ∘ R + z − r′ ∥2

 s.t.  r′ 1 ≥ ⋯ ≥ r′ n

min
r

∥π ∘ y − r′ ∥2

 s.t.  r′ 1 ≥ ⋯ ≥ r′ n

let  be a different rankingπ

VS

order the coordinates

π ∘ y = π ∘ R + π ∘ z d= π ∘ R + z

coupling

truthful



Proof ideas 

26

min
r

∥R + z − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

min
r

∥π ∘ R + z − r′ ∥2

 s.t.  r′ 1 ≥ ⋯ ≥ r′ n
VS

truthful untruthful



Proof ideas 

26

min
r

∥R + z − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

min
r

∥π ∘ R + z − r′ ∥2

 s.t.  r′ 1 ≥ ⋯ ≥ r′ n
VS

Suffice to show U(Proj(R + z)) ≥ U(Proj(π ∘ R + z))

truthful untruthful



Proof ideas 

26

min
r

∥R + z − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

min
r

∥π ∘ R + z − r′ ∥2

 s.t.  r′ 1 ≥ ⋯ ≥ r′ n
VS

Suffice to show U(Proj(R + z)) ≥ U(Proj(π ∘ R + z))

L e t  a n d . T h e n 

 for all  with equality when 

a = R + z b = π ∘ R + z
k

∑
i=1

ai ≥
k

∑
i=1

bi i i = n

Observation (given )R1 ≥ ⋯ ≥ Rn

truthful untruthful



Proof ideas 

26

min
r

∥R + z − r∥2

 s.t.  r1 ≥ ⋯ ≥ rn

min
r

∥π ∘ R + z − r′ ∥2

 s.t.  r′ 1 ≥ ⋯ ≥ r′ n
VS

Suffice to show U(Proj(R + z)) ≥ U(Proj(π ∘ R + z))

L e t  a n d . T h e n 

 for all  with equality when 

a = R + z b = π ∘ R + z
k

∑
i=1

ai ≥
k

∑
i=1

bi i i = n

Observation (given )R1 ≥ ⋯ ≥ Rn
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u v U(u) ≥ U(v)
U

Hardy–Littlewood–Pólya inequality
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If  (an outstanding paper and a junk 

paper)  

 If Alice is honest: oral presentation + rejection 

 If Alice lies: two accepted posters

R1 ≫ R2



When is the gain significant?

Letting noise sd  and  be fixed, we have 

 

σ V

0.4096 + on(1) ≤
supR:TV(R)≤V 𝔼∥R̂(π⋆) − R∥2

n1
3σ 4

3V 2
3

≤ 7.5625 + on(1)

Proposition (Zhang 2002)

Total variation TV(R) := max
i

Ri − min
i

Ri
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Examples of non-truthful knowledge partitions

Other than the trivial knowledge partition, there does not exist a 
truthful knowledge partition when n = 1

Non-existence when the dimension  n = 1

let where  
and , and 

𝒮 = {S1, S2}, S1 = {x : x1 ≥ x2 ≥ ⋯ ≥ xn}
S2 = ℝn∖S1 R = (nϵ, (n − 1)ϵ, …,2ϵ, ϵ) ∈ S1

A counterexample when n ≥ 3

32
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Coarse ranking
1. Set  that sum to 


2. Split  into ordered subsets  of sizes  such 
that  
                                               


3. But not required to make any within-subset comparisons
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Alice has  items in grade . Items of different grades have very 
different values, but Alice cannot determine for those of the same 
grade 

nq q

•  and : Alice ranks only the top 
 items

n1 = ⋯ = np−1 = 1 np = n − p + 1
p − 1

• : which items are the top 10%, which are 
the next top 10%, …?
n1 = ⋯ = n10 = n/10

• : which half are better than the other?n1 = n2 = n/2

Examples



Alice remains truthful

Report ordered subsets  of 
sizes  such that 

I1, …, Ip
n1, …, np

RI1
≥ RI2

≥ ⋯ ≥ RIp

Coarse ranking

x1

x2

x3
n1 = 1, n2 = 2

x1

x2

x3
n1 = 2, n2 = 1

Figure 1: Two block knowledge partitions with n = 3. The illustration shows only a slice of
the partitions restricted to the nonnegative orthant. make it larger.

Note that there are in total
n!

n1! · · ·np!

such knowledge elements, which together form a knowledge partition. As is clear, any two adjacent
knowledge elements are separated by pairwise-comparison hyperplanes. Figure 1 illustrates two
such knowledge partitions in the case of n = 3. the owner might or might not report the true
coarse ranking, again but this piece of information is what the appraiser would incorporate into the
following way of estimating the ground truth:

min
r

1

2
ky � rk2

s.t. r 2 SI ,

(3.3)

which is a convex optimization program since the knowledge element SI is convex. We call (3.3) a
coarse Isotonic Mechanism.

An application of this coarse ranking can be illustrated by the following scenario, where the
owner can provide a coarse ranking, but with no more other information.

Scenario 3.3. the owner makes nq products in grade q, for q = 1, . . . , p. Products of different
grades have significantly different values, but the owner cannot determine the relative values within
the same grade. While the numbers nq’s are public, the grade information is only known to the
owner.

The following result shows that this new knowledge partition is truth-telling. Although this
knowledge partition is pairwise-comparison based, Theorem 3 does not follow from Theorem 1.
Given in Section 5.3, indeed, the proof of Theorem 3 relies on some new ideas.

Theorem 3. Under Assumptions 2.1, 2.2, and 2.3, the expected utility is maximized if the owner
is truth-telling, that is, to report the coarse ranking that fulfills (3.2).

Remark 3.3. By taking n1 = 1 and n2 = n� 1, Theorem 3 shows that the collection of knowledge
elements taking the form (2.4) is truth-telling.

11
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such knowledge partitions in the case of n = 3. the owner might or might not report the true
coarse ranking, again but this piece of information is what the appraiser would incorporate into the
following way of estimating the ground truth:

min
r

1

2
ky � rk2

s.t. r 2 SI ,

(3.3)

which is a convex optimization program since the knowledge element SI is convex. We call (3.3) a
coarse Isotonic Mechanism.

An application of this coarse ranking can be illustrated by the following scenario, where the
owner can provide a coarse ranking, but with no more other information.

Scenario 3.3. the owner makes nq products in grade q, for q = 1, . . . , p. Products of different
grades have significantly different values, but the owner cannot determine the relative values within
the same grade. While the numbers nq’s are public, the grade information is only known to the
owner.

The following result shows that this new knowledge partition is truth-telling. Although this
knowledge partition is pairwise-comparison based, Theorem 3 does not follow from Theorem 1.
Given in Section 5.3, indeed, the proof of Theorem 3 relies on some new ideas.

Theorem 3. Under Assumptions 2.1, 2.2, and 2.3, the expected utility is maximized if the owner
is truth-telling, that is, to report the coarse ranking that fulfills (3.2).

Remark 3.3. By taking n1 = 1 and n2 = n� 1, Theorem 3 shows that the collection of knowledge
elements taking the form (2.4) is truth-telling.
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• “Which is your best paper” is truthful: n1 = 1, n2 = n − 1
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such knowledge partitions in the case of n = 3. the owner might or might not report the true
coarse ranking, again but this piece of information is what the appraiser would incorporate into the
following way of estimating the ground truth:

min
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(3.3)

which is a convex optimization program since the knowledge element SI is convex. We call (3.3) a
coarse Isotonic Mechanism.

An application of this coarse ranking can be illustrated by the following scenario, where the
owner can provide a coarse ranking, but with no more other information.

Scenario 3.3. the owner makes nq products in grade q, for q = 1, . . . , p. Products of different
grades have significantly different values, but the owner cannot determine the relative values within
the same grade. While the numbers nq’s are public, the grade information is only known to the
owner.

The following result shows that this new knowledge partition is truth-telling. Although this
knowledge partition is pairwise-comparison based, Theorem 3 does not follow from Theorem 1.
Given in Section 5.3, indeed, the proof of Theorem 3 relies on some new ideas.

Theorem 3. Under Assumptions 2.1, 2.2, and 2.3, the expected utility is maximized if the owner
is truth-telling, that is, to report the coarse ranking that fulfills (3.2).

Remark 3.3. By taking n1 = 1 and n2 = n� 1, Theorem 3 shows that the collection of knowledge
elements taking the form (2.4) is truth-telling.

11

• “Which is your best paper” is truthful: n1 = 1, n2 = n − 1
• Convex, so better estimation

34

best among your 3 papers? worst among your 3 papers?



Isotonic Mechanism with exponential family

Let ,  where yi ∼ fθ⋆
i

fθ(y) = eθy−b(θ)h(y)

35

• Variance of ratings depends on the mean

Joint work with Jianqing Fan and Yuling Yan



Isotonic Mechanism with exponential family

Let ,  where yi ∼ fθ⋆
i

fθ(y) = eθy−b(θ)h(y)

35

• Variance of ratings depends on the mean

min
θ

n

∑
i=1

[−θiyi + b(θi)]
 s.t.  θπ(1) ≥ ⋯ ≥ θπ(n)

Alice is asked to provide a ranking :π

Joint work with Jianqing Fan and Yuling Yan



Isotonic Mechanism with exponential family

Let ,  where yi ∼ fθ⋆
i

fθ(y) = eθy−b(θ)h(y)

35

• Variance of ratings depends on the mean

min
θ

n

∑
i=1

[−θiyi + b(θi)]
 s.t.  θπ(1) ≥ ⋯ ≥ θπ(n)

Alice is asked to provide a ranking :π
MLE

Joint work with Jianqing Fan and Yuling Yan



Isotonic Mechanism with exponential family

Let ,  where yi ∼ fθ⋆
i

fθ(y) = eθy−b(θ)h(y)

35

• Variance of ratings depends on the mean

min
θ

n

∑
i=1

[−θiyi + b(θi)]
 s.t.  θπ(1) ≥ ⋯ ≥ θπ(n)

•  (Barlow and Brunk 1972)μ = 𝔼θY = b′ (θ)

min
θ
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∑
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(yi − μi)2

 s.t.  μπ(1) ≥ ⋯ ≥ μπ(n)

Alice is asked to provide a ranking :π
MLE
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36

min
θ

n

∑
i=1

(yi − μi)2

 s.t.  μπ(1) ≥ ⋯ ≥ μπ(n)

✤ The Isotonic Mechanism for exponential family observations is truthful
✤ If a knowledge partition is truthful and cut by hyperplanes, it must be 

cut by pairwise comparisons

Theorem (Yan, S., and Fan 2023)

Score , pdf yi ∼ fθ⋆
i

fθ(y) = eθy−b(θ)h(y)

• Ranking remains optimal in this sense

• Implementation doesn’t require knowing  and !b(θ) h(y)
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Heterogeneity in utility  
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The Isotonic Mechanism remains truthful 

Theorem (S. 2022)
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Ranking data of ICML

41

• The Isotonic Mechanism was 
experimented this January at 
ICML 2023, which received 
6538 papers

• We developed a website 
(openrank.cc) for this project

• 9352/18535 authors attempted 
to do the experiment

• Have been analyzing since April 
22, when decisions were made

OpenRank will not accept answers in which all of 
your papers are ranked first
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Many examples of “you know the best”

Player valuation: coach knows his/her players well

Second-hand market: leasing company knows its cars well

Teacher and students; parent company and subsidiary companies; make medical appointments
46
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An owner-assisted estimation framework
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θ fθ
X

how to model “knowing 
about the ground truth”? 
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Another example of ranking + alignment

48

Isotonic Mechanism is author alignment using ranking

ChatGPT generates several outputs with the same 
question/prompt
Labelers rank the outputs based on human 
preferences

Source: OpenAI

• Authors know about their submissions  
better than reviewers


• Humans know about ethics better than 
machines



Future work

• Extension to multi-owner settings


• Relax convexity assumption


• Other use cases? Recommender systems where an influencer submits 
multiple videos to TikTok
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• Future work: model probabilistic rankings

Joint work with Jibang Wu and Haifeng Xu
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Other reasons for using the Isotonic Mechanism

• Quota of accepted papers: it’s really about comparisons


• Conference papers are easier to compare than journal papers


• Even if the utility is non-convex, it might still be truthful in some cases 
(e.g., concerning only the highest rating for best paper awards)


• Most people are not adversarial


• Can use it ‘softly’: only SACs or above know the adjusted ratings


• Might discourage guest authorship


• Current system not working well (e.g., controversies on the ICML 2022 
outstanding paper awards)
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