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Abstract
In the past decade, differential privacy has seen remark-
able success as a rigorous and practical formalization of 
data privacy. This privacy definition and its divergence 
based relaxations, however, have several acknowledged 
weaknesses, either in handling composition of private 
algorithms or in analysing important primitives like 
privacy amplification by subsampling. Inspired by the 
hypothesis testing formulation of privacy, this paper pro-
poses a new relaxation of differential privacy, which we 
term ‘f-differential privacy’ (f-DP). This notion of privacy 
has a number of appealing properties and, in particular, 
avoids difficulties associated with divergence based relax-
ations. First, f-DP faithfully preserves the hypothesis test-
ing interpretation of differential privacy, thereby making 
the privacy guarantees easily interpretable. In addition, f-
DP allows for lossless reasoning about composition in an 
algebraic fashion. Moreover, we provide a powerful tech-
nique to import existing results proven for the original dif-
ferential privacy definition to f-DP and, as an application 
of this technique, obtain a simple and easy-to-interpret 
theorem of privacy amplification by subsampling for f-
DP. In addition to the above findings, we introduce a ca-
nonical single-parameter family of privacy notions within 
the f-DP class that is referred to as ‘Gaussian differential 
privacy’ (GDP), defined based on hypothesis testing of 
two shifted Gaussian distributions. GDP is the focal pri-
vacy definition among the family of f-DP guarantees due 
to a central limit theorem for differential privacy that we 
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1  |   INTRODUCTION

Modern statistical analysis and machine learning are overwhelmingly applied to data concerning 
people. Valuable data sets generated from personal devices and online behaviour of billions of 
individuals contain data on location, web search histories, media consumption, physical activity, 
social networks and more. This is on top of continuing large-scale analysis of traditionally sen-
sitive data records, including those collected by hospitals, schools and the Census. This reality 
requires the development of tools to perform large-scale data analysis in a way that still protects 
the privacy of individuals represented in the data.

Unfortunately, the history of data privacy for many years consisted of ad hoc attempts at 
‘anonymizing’ personal information, followed by high profile de-anonymizations. This in-
cludes the release of AOL search logs, de-anonymized by the New York Times (Barbaro & 
Zeller, 2006), the Netflix Challenge data set, de-anonymized by Narayanan and Shmatikov 
(2008), the realization that participants in genome-wide association studies could be iden-
tified from aggregate statistics such as minor allele frequencies that were publicly released 
(Homer et al., 2008), and the reconstruction of individual-level census records from aggregate 
statistical releases (Abowd, 2018).

Thus, we urgently needed a rigorous and principled privacy-preserving framework to prevent 
breaches of personal information in data analysis. In this context, differential privacy has put 
private data analysis on firm theoretical foundations (Dwork et al., 2006a,b). This definition has 
become tremendously successful; in addition to an enormous and growing academic literature, it 
has been adopted as a key privacy technology by Google (Erlingsson et al., 2014), Apple (Apple, 
2017), Microsoft (Ding et al., 2017) and the US Census Bureau (Abowd, 2018). The definition of 
this concept involves privacy parameters ɛ ≥ 0 and 0 ≤ δ ≤ 1.

prove. More precisely, the privacy guarantees of any hy-
pothesis testing based definition of privacy (including the 
original differential privacy definition) converges to GDP 
in the limit under composition. We also prove a Berry–
Esseen style version of the central limit theorem, which 
gives a computationally inexpensive tool for tractably 
analysing the exact composition of private algorithms. 
Taken together, this collection of attractive properties 
render f-DP a mathematically coherent, analytically trac-
table and versatile framework for private data analysis. 
Finally, we demonstrate the use of the tools we develop 
by giving an improved analysis of the privacy guarantees 
of noisy stochastic gradient descent.
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Definition 1  (Dwork et al., 2006a, b). A randomized algorithm M that takes as input a data set 
consisting of individuals is (ɛ, δ)-differentially private (DP) if for any pair of data sets S, S′ 
that differ in the record of a single individual, and any event E,

When δ = 0, the guarantee is simply called ɛ-DP.

In this definition, data sets are fixed and the probabilities are taken only over the randomness 
of the mechanism. In particular, the event E can take any measurable set in the range of M. 
To achieve differential privacy, a mechanism is necessarily randomized. For example, consider 
the problem of privately releasing the average cholesterol level of individuals in the data set 
S = (x1, …, xn), where xi corresponds to the cholesterol level of individual i. A privacy-preserving 
mechanism may take the form

The level of the noise has to be large enough to mask the characteristics of any individual's cho-
lesterol level, while not being too large to distort the population average for accuracy purposes. 
Consequently, the probability distributions of M(S) and M(S′) are close to each other for any data 
sets S, S′ that differ in only one individual record.

Differential privacy is most naturally defined through a hypothesis testing problem from the 
perspective of an attacker who aims to distinguish S from S′ based on the output of the mech-
anism. This statistical viewpoint was first observed by Wasserman and Zhou (2010) and then 
further developed by Kairouz et al. (2017), which is a direct inspiration for our work. In short, 
consider the hypothesis testing problem

and call Alice the only individual that is in S but not S′. As such, rejecting the null hypothesis cor-
responds to the detection of the absence of Alice, whereas accepting the null hypothesis means to 
detect the presence of Alice in the data set. Using the output of an (ɛ, δ)-DP mechanism, the power 
of any test at significance level 0 < α < 1 has an upper bound of eɛα + δ. This bound is only slightly 
larger than α provided that ɛ, δ are small and, therefore, any test is essentially powerless. Put dif-
ferently, differential privacy with small privacy parameters protects against any inferences of the 
presence of Alice, or any other individual, in the data set.

Despite its apparent success, there are good reasons to want to relax the original definition of 
differential privacy, which has led to a long line of proposals for such relaxations. The most im-
portant shortcoming is that (ɛ, δ)-DP does not tightly handle composition. Composition concerns 
how privacy guarantees degrade under repetition of mechanisms applied to the same data set, 
rendering the design of differentially private algorithms modular. Without compositional prop-
erties, it would be near impossible to develop complex differentially private data analysis meth-
ods. Although it has been known since the original papers defining differential privacy (Dwork 
et al., 2006a,b) that the composition of an (ɛ1, δ1)-DP mechanism and an (ɛ2, δ2)-DP mechanism 
yields an (ɛ1 + ɛ2, δ1 + δ2)-DP mechanism, the corresponding upper bound e�1+�2� + �1 + �2 
on the power of any test at significance level α no longer tightly characterizes the trade-off be-
tween significance level and power for the testing between S and S′. In Dwork et al. (2010), the 

(1)ℙ
[
M(S) ∈ E

] ≤ e�ℙ
[
M(S�) ∈ E

]
+ �.

M(S) =
x1 +⋯ + xn

n
+ noise.

(2)H0: the underlying data set is S versus H1: the underlying data set is S
′
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authors gave an improved composition theorem, but it fails to capture the correct hypothesis 
testing trade-off. This is for a fundamental reason: (ɛ, δ)-DP is mis-parameterized in the sense 
that the guarantees of the composition of (ɛi,  δi)-DP mechanisms cannot be characterized by 
any single pair of parameters (ɛ, δ). Even worse, given any δ, finding the smallest parameter ɛ for 
composition of a sequence of differentially private algorithms is computationally hard (Murtagh 
& Vadhan, 2016), and so in practice, one must resort to approximations. Given that composition 
and modularity are first-order desiderata for a useful privacy definition, these are substantial 
drawbacks and often continue to push practical algorithms with meaningful privacy guarantees 
out of reach.

In the light of this, substantial recent effort has been devoted to developing relaxations of 
differential privacy for which composition can be handled exactly. This line of work includes 
several variants of ‘concentrated differential privacy’ (Bun & Steinke, 2016; Dwork & Rothblum, 
2016), ‘Rényi differential privacy’ (Mironov, 2017) and ‘truncated concentrated differential pri-
vacy’ (Bun et al., 2018a). These definitions are tailored to be able to exactly and easily track the 
‘privacy cost’ of compositions of the most basic primitive in differential privacy, which is the 
perturbation of a real valued statistic with Gaussian noise.

While this direction of privacy relaxation has been quite fruitful, there are still several 
places one might wish for improvement. First, these notions of differential privacy no longer 
have hypothesis testing interpretations, but are rather based on studying divergences that sat-
isfy a certain information processing inequality. There are good reasons to prefer definitions 
based on hypothesis testing. Most immediately, hypothesis testing based definitions provide 
an easy way to interpret the guarantees of a privacy definition. More fundamentally, a theo-
rem due to Blackwell (see Theorem 2) provides a formal sense in which a tight understand-
ing of the trade-off between type I and type II errors for the hypothesis testing problem of 
distinguishing between M(S) and M(S′) contains only more information than any divergence 
between the distributions M(S) and M(S′) (so long as the divergence satisfies the information 
processing inequality).

Second, certain simple and fundamental primitives associated with differential privacy—
most notably, privacy amplification by subsampling (Kasiviswanathan et al., 2011)—either fail 
to apply to the existing relaxations of differential privacy, or require a substantially complex 
analysis (Wang et al., 2018). This is especially problematic when analysing privacy guaran-
tees of stochastic gradient descent—arguably the most popular present-day optimization algo-
rithm—as subsampling is inherent to this algorithm. At best, this difficulty arising from using 
these relaxations could be overcome by using complex technical machinery. For example, it 
necessitated Abadi et al. (2016) to develop the numerical moments accountant method to side-
step the issue.

1.1  |  Our contributions

In this work, we introduce a new relaxation of differential privacy that avoids these issues and 
has other attractive properties. Rather than giving a ‘divergence’ based relaxation of differential 
privacy, we start fresh from the hypothesis testing interpretation of differential privacy, and ob-
tain a new privacy definition by allowing the full trade-off between type I and type II errors in the 
simple hypothesis testing problem (2) to be governed by some function f. The functional privacy 
parameter f is to this new definition as (ɛ, δ) is to the original definition of differential privacy. 
Notably, this definition that we term f-differential privacy (f-DP)—which captures (ɛ, δ)-DP as a 
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special case—is accompanied by a powerful and elegant toolkit for reasoning about composition. 
Here, we highlight some of our contributions:

1.1.1  |  An algebra for composition

We show that our privacy definition is closed and tight under composition, which means that 
the trade-off between type I and type II errors that results from the composition of an f1-DP 
mechanism with an f2-DP mechanism can always be exactly described by a certain function f. 
This function can be expressed via f1 and f2 in an algebraic fashion, thereby allowing for losslessly 
reasoning about composition. In contrast, (ɛ, δ)-DP or any other privacy definition artificially 
restricts itself to a small number of parameters. By allowing for a function to keep track of the 
privacy guarantee of the mechanism, our new privacy definition avoids the pitfall of premature 
summarization (to quote Holmes, 2019, ‘Premature summarization is the root of all evil in statis-
tics’.) in intermediate steps and, consequently, yields a comprehensive delineation of the overall 
privacy guarantee. See more details in Section 3.

1.1.2  |  A central limit phenomenon

We define a single-parameter family of f-DP that uses the type I and type II error trade-off in dis-
tinguishing the standard normal distribution  (0, 1) from  (�, 1) for μ ≥ 0. This is referred to as 
Gaussian differential privacy (GDP). By relating to the hypothesis testing interpretation of differ-
ential privacy (2), the GDP guarantee can be interpreted as saying that determining whether or 
not Alice is in the data set is at least as difficult as telling apart  (0, 1) and  (�, 1) based on one 
draw. Moreover, we show that GDP is a ‘canonical’ privacy guarantee in a fundamental sense: for 
any privacy definition that retains a hypothesis testing interpretation, we prove that the privacy 
guarantee of composition with an appropriate scaling converges to GDP in the limit. This central 
limit theorem type of result is remarkable not only because of its profound theoretical implica-
tion, but also for providing a computationally tractable tool for analytically approximating the 
privacy loss under composition. Figure 1 demonstrates that this tool yields surprisingly accurate 
approximations to the exact trade-off in testing the hypotheses (2) or substantially improves on 
the existing privacy guarantee in terms of type I and type II errors. See Sections 2.2 and 3 for a 
thorough discussion.

1.1.3  |  A primal-dual perspective

We show a general duality between f-DP and infinite collections of (ɛ, δ)-DP guarantees. This 
duality is useful in two ways. First, it allows one to analyse an algorithm in the framework of f-
DP, and then convert back to an (ɛ, δ)-DP guarantee at the end, if desired. More fundamentally, 
this duality provides an approach to import techniques developed for (ɛ, δ)-DP to the framework 
of f-DP. As an important application, we use this duality to show how to reason simply about 
privacy amplification by subsampling for f-DP, by leveraging existing results for (ɛ, δ)-DP. This 
is in contrast to divergence based notions of privacy, in which reasoning about amplification by 
subsampling is difficult.



8  |      DONG et al.

Taken together, this collection of attractive properties render f-DP a mathematically coher-
ent, computationally efficient and versatile framework for privacy-preserving data analysis. To 
demonstrate the practical use of this hypothesis testing-based framework, we give a substantially 
sharper analysis of the privacy guarantees of noisy stochastic gradient descent, improving on 
previous special-purpose analyses that reasoned about divergences rather than directly about 
hypothesis testing (Abadi et al., 2016). This application is presented in Section 5.

2  |   f - DIFFERENTIAL PRIVACY AND ITS BASIC  
PROPERTIES

In Section 2.1, we give a formal definition of f-DP. Section 2.2 introduces Gaussian differential 
privacy, a special case of f-DP. In Section 2.3, we highlight some appealing properties of this new 
privacy notation from an information-theoretic perspective. Next, Section 2.4 offers a profound 
connection between f-DP and (ɛ, δ)-DP. Finally, we discuss the group privacy properties of f-DP.

Before moving on, we first establish several key pieces of notation from the differential pri-
vacy literature.

•	 Data set. A data set S is a collection of n records, each corresponding to an individual. Formally, 
we write the data set as S = (x1, …, xn), and an individual xi ∈ X  for some abstract space X. Two 
data sets S� = (x�

1
, …, x�n) and S are said to be neighbours if they differ in exactly one record, that 

is, there exists an index j such that xi = x�
i
 for all i ≠ j and xj ≠ x′

j
.

F I G U R E  1   Left: Our central limit theorem based approximation (in blue) is very close to the composition 
of just 10 mechanisms (in red). The tightest possible approximation via an (ɛ, δ)-DP guarantee (in back) is 
substantially looser. See Figure 5 for parameter setup. Right: Privacy analysis of stochastic gradient descent used 
to train a convolutional neural network on MNIST (LeCun & Cortes, 2010). The f-DP framework yields a privacy 
guarantee (in red) for this problem that is significantly better than the optimal (ɛ,δ)-DP guarantee (in black) that 
is derived from the moments accountant (MA) method (Abadi et al., 2016). Put simply, our analysis shows that 
stochastic gradient descent releases less sensitive information than expected in the literature. See Section 5 for 
more plots and details [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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•	 Mechanism. A mechanism M refers to a randomized algorithm that takes as input a data set 
S and releases some (randomized) statistics M(S) of the data set in some abstract space Y. For 
example, a mechanism can release the average salary of individuals in the data set plus some 
random noise.

2.1  |  Trade-off functions and f-DP

All variants of differential privacy informally require that it be hard to distinguish any pairs of 
neighbouring data sets based on the information released by a private a mechanism M. From an 
attacker's perspective, it is natural to formalize this notion of ‘indistinguishability’ as a hypoth-
esis testing problem for two neighbouring data sets S and S′:

The output of the mechanism M serves as the basis for performing the hypothesis testing problem. 
Denote by P and Q the probability distributions of the mechanism applied to the two data sets, 
namely M(S) and M(S′), respectively. The fundamental difficulty in distinguishing the two hypothe-
ses is best delineated by the optimal trade-off between the achievable type I and type II errors. More 
precisely, consider a rejection rule 0 ≤ ϕ ≤ 1 that takes as input the released results of the mechanism, 
with its type I and type II errors defined as

respectively. The two errors satisfy, for example, the well-known constraint �� + �� ≥ 1 − TV(P, Q) , 
where the total variation distance TV(P, Q) is the supremum of |P(A) − Q(A)| over all measurable 
sets A. Instead of this rough constraint, we seek to characterize the fine-grained trade-off between 
the two errors. Explicitly, fixing the type I error at any level, we consider the minimal achievable type 
II error. This motivates the following definition.

Definition 2  (trade-off function). For any two probability distributions P and Q on the same 
space, define the trade-off function T(P, Q) : [0, 1] → [0, 1] as

where the infimum is taken over all (measurable) rejection rules.

The trade-off function serves as a clear-cut boundary of the achievable and unachievable re-
gions of type I and type II errors, rendering itself the complete characterization of the fundamen-
tal difficulty in testing between the two hypotheses. The greater this function is, the harder it is 
to distinguish the two distributions. In particular, the greatest trade-off function is the identity 
trade-off function Id(α) := 1 − α. Notably, 1 − f is the ROC curve for classifying the output as 
being from the null or alternative hypothesis. For completeness, the minimal �� can be achieved 
by the likelihood ratio test—a fundamental result known as the Neyman–Pearson lemma, which 
is stated in Appendix A for convenience.

H0 : the underlying data set is S versus H1 : the underlying data set is S
′.

�� = �P[�], �� = 1 − �Q[�],

T(P,Q)(�) = inf
{
��: �� ≤ �

}
,
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A function is called a trade-off function if it is equal to T(P, Q) for some distributions P and 
Q. Below we give a necessary and sufficient condition for f to be a trade-off function and relegate 
its proof to Appendix A. This characterization reveals, for example, that max{f, g} is a trade-off 
function if both f and g are trade-off functions.

Proposition 1  A function f : [0, 1] → [0, 1] is a trade-off function if and only if f is convex, con-
tinuous, non-increasing and f  (x) ≤ 1 − x for x  ∈  [0, 1].

Now, we propose a new generalization of differential privacy built on top of trade-off func-
tions. Below, we write g ≥ f for two functions defined on [0, 1] if g(x) ≥ f(x) for all 0 ≤ x ≤ 1, and we 
abuse notation by identifying M(S) and M(S′) with their corresponding probability distributions. 
Note that if T(P, Q) ≥ T(P̃, Q̃), then in a very strong sense, P and Q are harder to distinguish 
than P̃ and Q̃ at any level of type I error.

Definition 3  (f-differential privacy). Let f be a trade-off function. A mechanism M is said to be 
f-differentially private if

for all neighbouring data sets S and S′.

A graphical illustration of this definition is shown in Figure 2. Letting P and Q be the dis-
tributions such that f = T(P, Q), this privacy definition amounts to saying that a mechanism 
is f-DP if distinguishing any two neighbouring data sets based on the released information is 
at least as difficult as distinguishing P and Q based on a single draw. In contrast to existing 

T
(
M(S),M(S′)

) ≥ f

F I G U R E  2   Three different examples of T(M(S), M(S′)). Only the dashed line corresponds to a trade-off 
function satisfying f-DP
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definitions of differential privacy, our new definition is parameterized by a function, as op-
posed to several real-valued parameters (e.g., ɛ and δ). This functional perspective offers a 
complete characterization of ‘privacy’, thereby avoiding the pitfall of summarizing statistical 
information too early. This fact is crucial to the development of a composition theorem for f-
DP in Section 3. Although this completeness comes at the cost of increased complexity, as we 
will see in Section 2.2, a simple family of trade-off functions can often closely capture privacy 
loss in many scenarios.

Naturally, the definition of f-DP is symmetric in the same sense as the neighbouring relation-
ship, which by definition is symmetric. Observe that this privacy notion also requires

for any neighbouring pair S, S′. Therefore, it is desirable to restrict our attention to ‘symmetric’ trade-
off functions. Proposition 2 shows that this restriction does not lead to any loss of generality.

Proposition 2  Let a mechanism M be f-DP. Then, M is f S-DP with f S = max{f,  f−1}, where the 
inverse function is defined as

for α  ∈  [0, 1].

We prove Proposition 2 in Appendix A. Writing f = T(P, Q), we can express the inverse as 
f−1 = T(Q, P), which therefore is also a trade-off function. As a consequence of this, fS continues 
to be a trade-off function by making use of Proposition 1 and, moreover, is symmetric in the sense 
that

Importantly, this symmetrization gives a tighter bound in the privacy definition since fS ⩾ f. In the 
remainder of the paper, therefore, trade-off functions will always be assumed to be symmetric unless 
otherwise specified.

We conclude this subsection by showing that f-DP is a generalization of (ɛ, δ)-DP. This fore-
shadows a deeper connection between f-DP and (ɛ, δ)-DP that will be discussed in Section 2.4. 
Denote

for 0 ≤ α ≤ 1, which is a trade-off function. Figure 3 shows the graph of this function and its evident 
symmetry. The following result is adapted from Wasserman and Zhou (2010).

Proposition 3  (Wasserman & Zhou, 2010). A mechanism M is (ɛ, δ)-DP if and only if M is 
fɛ, δ-DP.

T
(
M(S′),M(S)

) ≥ f

(3)f −1(�): = inf{t ∈ [0, 1]: f (t) ≤ �}

f S = (f S)−1.

(4)f�,�(�) =max
{
0, 1 − � − e��, e−�(1 − � − �)

}
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2.2  |  Gaussian differential privacy

This subsection introduces a parametric family of f-DP guarantees, where f is the trade-off func-
tion of two normal distributions. We refer to this specialization as Gaussian differential privacy 
(GDP). GDP enjoys many desirable properties that lead to its central role in this paper. Among 
others, we can now precisely define the trade-off function with a single parameter. To define this 
notion, let

for μ ≥ 0. An explicit expression for the trade-off function Gμ reads

where Φ denotes the standard normal CDF. For completeness, we provide a proof of (5) in Appendix 
A. This trade-off function is decreasing in μ in the sense that G� ≤ G�′ if � ≥ �′. We now define 
GDP:

Definition 4  A mechanism M is said to satisfy μ-Gaussian Differential Privacy (μ-GDP) if it is 
Gμ-DP. That is,

for all neighbouring data sets S and S′.

G�: = T
( (0, 1), (�, 1)

)

(5)G�(�) = Φ
(
Φ−1(1 − �) − �

)
,

T(M(S),M(S′)) ≥ G�

F I G U R E  3   Left: fɛ,δ is a piecewise linear function and is symmetric with respect to the line y = x. It has 
(nontrivial) slopes −e±ɛ and intercepts 1 − δ. Right: Trade-off functions of unit-variance Gaussian distributions 
with different means. The case of μ = 0.5 is reasonably private, μ = 1 is borderline private, and μ = 3 is basically 
non-private: an adversary can control type I and type II errors simultaneously at only 0.07. In the case of μ = 6 
(almost coincides with the axes), the two errors both can be as small as 0.001
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GDP has several attractive properties. First, this privacy definition is fully described by the 
single mean parameter of a unit-variance Gaussian distribution, which makes it easy to describe 
and interpret the privacy guarantees. For instance, one can see from the right panel of Figure 3 
that μ ≤ 0.5 guarantees a reasonable amount of privacy, whereas if μ ⩾ 6, almost nothing is being 
promised. Second, loosely speaking, GDP occupies a role among all hypothesis testing based 
notions of privacy that is similar to the role that the Gaussian distribution has among general 
probability distributions. We formalize this important point by proving central limit theorems for 
f-DP in Section 3, which, roughly speaking, says that f-DP converges to GDP under composition 
in the limit. Lastly, as shown in the remainder of this subsection, GDP precisely characterizes the 
Gaussian mechanism, one of the most fundamental building blocks of differential privacy.

Consider the problem of privately releasing a univariate statistic θ(S) of the data set S. Define 
the sensitivity of θ as

where the supremum is over all neighbouring data sets. The Gaussian mechanism adds Gaussian 
noise to the statistic θ in order to obscure whether θ is computed on S or S′. The following result 
shows that the Gaussian mechanism with noise properly scaled to the sensitivity of the statistic 
satisfies GDP.

Theorem 1  Define the Gaussian mechanism that operates on a statistic θ as M(S) = θ(S) + ξ, 
where � ∼  (0, sens(�)2∕�2). Then, M is μ-GDP.

Proof of Theorem 1  Recognizing that M(S), M(S′) are normally distributed with means θ(S), 
θ(S′), respectively, and common variance �2 = sens(�)2∕�2, we get

By the definition of sensitivity, |�(S) − �(S�)|∕� ≤ sens(�)∕� = �. Therefore, we get

This completes the proof.

As implied by the proof above, GDP offers the tightest possible privacy bound of the Gaussian 
mechanism. More precisely, the Gaussian mechanism in Theorem 1 satisfies

where the infimum is (asymptotically) achieved at the two neighbouring data sets such that 
|�(S) − �(S�)| = sens(�) irrespective of the type I error α. As such, the characterization by GDP is 
precise in the pointwise sense. In contrast, the right-hand side of Equation (6) in general is not neces-
sarily a convex function of α and, in such case, is not a trade-off function according to Proposition 1. 
This nice property of Gaussian mechanism is related to the log-concavity of Gaussian distributions. 
See Proposition A.3 for a detailed treatment of log-concave distributions.

sens(�) = sup
S,S�

|�(S) − �(S�)|,

T(M(S),M(S�)) = T( (�(S), �2), (�(S�), �2)) = G|�(S)−�(S�)|∕� .

T(M(S),M(S�)) = G|�(S)−�(S�)|∕� ⩾ G�.

(6)G�(�) = inf
neighbouring S,S�

T(M(S),M(S�))(�),
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2.3  |  Post-processing and the informativeness of f-DP

Intuitively, a data analyst cannot make a statistical analysis more disclosive only by processing 
the output of the mechanism M. This is called the post-processing property, a natural require-
ment that any notion of privacy, including our definition of f-DP, should satisfy.

To formalize this point for f-DP, denote by Proc : Y → Z a (randomized) algorithm that maps 
the input M(S)  ∈  Y to some space Z, yielding a new mechanism that we denote by Proc ∘ M. The 
following result confirms the post-processing property of f-DP.

Proposition 4  If a mechanism M is f-DP, then its post-processing Proc ∘ M is also f-DP.

Proposition 4 is a consequence of the following lemma. Let Proc(P) be the probability distri-
bution of Proc(ζ) with ζ drawn from P. Define Proc(Q) likewise.

Lemma 1  For any two distributions P and Q, we have T(Proc(P), Proc(Q)) ⩾ T(P, Q).

This lemma means that post-processed distributions can only become more difficult to tell 
apart than the original distributions from the perspective of trade-off functions. While the 
same property holds for many divergence based measures of indistinguishability such as the 
Rényi divergences used by the concentrated differential privacy family of definitions (Bun & 
Steinke, 2016; Bun et al., 2018a; Dwork & Rothblum, 2016; Mironov, 2017), a consequence of 
the following theorem is that trade-off functions offer the most informative measure among 
all. This remarkable inverse of Lemma 1 is due to Blackwell (see also Theorem 2.5 in Kairouz 
et al., 2017).

Theorem 2  (Blackwell, 1950, Theorem 10). Let P, Q be probability distributions on Y and P′, Q′ 
be probability distributions on Z. The following two statements are equivalent:

1.	 T(P,  Q)  ≤  T(P′,Q′).
2.	 There exists a randomized algorithm Proc: Y → Z such that Proc(P) = P′, Proc(Q) = Q′.

To appreciate the implication of this theorem, we begin by observing that post-processing in-
duces an order on pairs of distributions, which is called the Blackwell order (see, e.g., Raginsky, 
2011). Specifically, if the above condition (b) holds, then we write (P, Q) ⪯Blackwell (P′, Q′) and 
interpret this as ‘(P, Q) is easier to distinguish than (P′, Q′) in the Blackwell sense’. Similarly, 
when T(P, Q) ≤ T(P′, Q′), we write (P, Q) ⪯tradeoff (P′, Q′) and interpret this as ‘(P, Q) is easier to 
distinguish than (P′, Q′) in the testing sense’. In general, any privacy measure used in defining a 
privacy notion induces an order ⪯ on pairs of distributions. Assuming the post-processing prop-
erty for the privacy notion, the induced order ⪯ must be consistent with ⪯Blackwell. Concretely, we 
denote by Ineq(⪯) = {(P, Q; P′, Q′) : (P, Q) ⪯ (P′, Q′)} the set of all comparable pairs of the order 
⪯. As is clear, a privacy notion satisfies the post-processing property if and only if the induced 
order ⪯ satisfies Ineq(⪯)  ⊇  Ineq(⪯Blackwell).

Therefore, for any reasonable privacy notion, the set Ineq(⪯) must be large enough to contain 
Ineq(⪯Blackwell). However, it is also desirable to have a not too large Ineq(⪯). For example, con-
sider the privacy notion based on a trivial divergence D0 with D0(P‖Q) ≡ 0 for any P, Q. Note 
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that Ineq(⪯D0 ) is the largest possible and, meanwhile, it is not informative at all in terms of mea-
suring the indistinguishability of two distributions.

The argument above suggests that going from the ‘minimal’ order Ineq(⪯Blackwell) to the 
‘maximal’ order Ineq(⪯D0 ) would lead to information loss. Remarkably, f-DP is the most in-
formative differential privacy notion from this perspective because its induced order ⪯tradeoff 
satisfies Ineq(⪯tradeoff) = Ineq(⪯Blackwell). In stark contrast, this is not true for the order induced 
by other popular privacy notions such as Rényi differential privacy and (ɛ, δ)-DP. We prove 
this claim in Appendix B and further justify the informativeness of f-DP by providing general 
tools that can losslessly convert f-DP guarantees into divergence based privacy guarantees.

2.4  |  A primal-dual perspective

In this subsection, we show that f-DP is equivalent to an infinite collection of (ɛ, δ)-DP guarantees 
via the convex conjugate of the trade-off function. As a consequence of this, we can view f-DP 
as the primal privacy representation and, accordingly, its dual representation is the collection 
of (ɛ, δ)-DP guarantees. Taking this powerful viewpoint, many results from the large body of 
(ɛ, δ)-DP work can be carried over to f-DP in a seamless fashion. In particular, this primal-dual 
perspective is crucial to our analysis of ‘privacy amplification by subsampling’ in Section 4. All 
proofs are deferred to Appendix A.

First, we present the result that converts a collection of (ɛ, δ)-DP guarantees into an f-DP guar-
antee. This result is self-evidence and its proof is, therefore, omitted.

Proposition 5  (Dual to primal). Let I be an arbitrary index set such that each i  ∈  I is associated 
with �i ∈ [0, ∞) and �i ∈ [0, 1]. A mechanism is (ɛi, δi)-DP for all i  ∈  I if and only if it is 
f-DP with

This proposition follows easily from the equivalence of (ɛ, δ)-DP and fɛ,δ-DP. We remark that 
the function f constructed above remains a symmetric trade-off function.

The more interesting direction is to convert f-DP into a collection of (ɛ, δ)-DP guarantees. 
Recall that the convex conjugate of a function g defined on (−∞, ∞) is defined as

To define the conjugate of a trade-off function f, we extend its domain by setting f(x) = ∞ for x < 0 
and x > 1. With this adjustment, the supremum is effectively taken over 0 ≤ x ≤ 1.

Proposition 6  (Primal to dual). For a symmetric trade-off function f, a mechanism is f-DP if and 
only if it is (ɛ, δ(ɛ))-DP for all ɛ ⩾ 0 with δ(ɛ) = 1 + f *(−eɛ).

For example, taking f = Gμ, the following corollary provides a lossless conversion from GDP 
to a collection of (ɛ, δ)-DP guarantees. This conversion is exact and, therefore, any other (ɛ, δ)-DP 
guarantee derived for the Gaussian mechanism is implied by this corollary. See Figure 4 for an 
illustration of this result.

f = sup
i∈ I

f�i,�i .

(7)g∗(y) = sup
−∞<x<∞

yx − g(x).
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Corollary 1  A mechanism is μ-GDP if and only if it is (ɛ, δ(ɛ))-DP for all ɛ ⩾ 0, where

This corollary has appeared earlier in Balle and Wang (2018). Along this direction, Balle et al. 
(2018) further proposed ‘privacy profile’, which in essence corresponds to an infinite collection 
of (ɛ, δ). The notion of privacy profile mainly serves as an analytical tool in Balle et al. (2018).

The primal-dual perspective provides a useful tool through which we can bridge the two pri-
vacy definitions. In some cases, it is easier to work with f-DP by leveraging the interpretation and 
informativeness of trade-off functions, as seen from the development of composition theorems 
for f-DP in Section 3. Meanwhile, (ɛ, δ)-DP is more convenient to work with in the cases where 
the lower complexity of two parameters ɛ, δ is helpful, for example, in the proof of the privacy 
amplification by subsampling theorem for f-DP. In short, our approach in Section 4 is to first 
work in the dual world and use existing subsampling theorems for (ɛ, δ)-DP, and then convert the 
results back to f-DP using a slightly more advanced version of Proposition 6.

2.5  |  Group privacy

The notion of f-DP can be extended to address privacy of a group of individuals, and a question 
of interest is to quantify how privacy degrades as the group size grows. To set up the notation, 
we say that two data sets S, S′ are k-neighbours (where k ≥ 2 is an integer) if there exist data sets 
S = S0, S1, …, Sk = S′ such that Si and Si+1 are neighbouring or identical for all i = 0, …, k−1. 

�(�) = Φ

(
−

�

�
+

�

2

)
− e�Φ

(
−

�

�
−

�

2

)
.

F I G U R E  4   Each (ɛ, δ(ɛ))-DP guarantee corresponds to two supporting linear functions (symmetric to each 
other) to the trade-off function describing the complete f-DP guarantee. In general, characterizing a privacy 
guarantee using only a subset of (ɛ, δ)-DP guarantees (for example, only those with small δ) would result in 
information loss [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Equivalently, S, S′ are k-neighbours if they differ by at most k individuals. Accordingly, a mecha-
nism M is said to be f-DP for groups of size k if

for all k-neighbours S and S′.
In the following theorem, we use h∘k to denote the k-fold iterative composition of a function h. 

For example, h∘1 =  h and h∘2(x)=h(h(x)).

Theorem 3  If a mechanism is f-DP, then it is [1 − (1 − f)∘k]-DP for groups of size k. In particular, 
if a mechanism is μ-GDP, then it is kμ-GDP for groups of size k.

For completeness, 1 − (1 − f)∘k is a trade-off function and, moreover, remains symmetric if f is 
symmetric. These two facts and Theorem 3 are proved in Appendix A. As revealed in the proof, 
the privacy bound 1−(1−f)∘k in general cannot be improved, thereby showing that the group op-
eration in the f-DP framework is closed and tight. In addition, it is easy to see that 1 − (1 − f)∘k ≤ 
1 − (1 − f)∘(k−1) by recognizing that the trade-off function f satisfies 1 − f(x) ⩾ x. This is consistent 
with the intuition that detecting changes in groups of k individuals becomes easier as the group 
size increases.

As an interesting consequence of Theorem 3, the group privacy of ɛ-DP in the limit corre-
sponds to the trade-off function of two Laplace distributions. Recall that the density of Lap(μ, b) 
is 1

2b
e−|x−�|∕b.

T(M(S),M(S′)) ⩾ f

F I G U R E  5   Left: Tensoring with f0,δ scales the graph towards the origin by a factor of 1 − δ. Right: Tenfold 
composition of (1∕

√
10, 0)-DP mechanisms, that is, f⊗n

𝜀,0
 with n = 10, � = 1∕

√
n. The dashed curve corresponds 

to ɛ = 2.89, δ = 0.001. These values are obtained by first setting δ=0.001 and finding the smallest ɛ such that the 
composition is (ɛ, δ)-DP. Note that the central limit theorem approximation to the true trade-off curve is almost 
perfect, whereas the tightest possible approximation via (ɛ, δ)-DP is substantially looser [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Proposition 7  Fix μ ≥ 0 and set ɛ = μ/k. As k → ∞, we have

The convergence is uniform over [0, 1].

Two remarks are in order. First, T(Lap(0, 1), Lap(μ, 1)) is not equal to fɛ,δ for any ɛ, δ and, there-
fore, (ɛ, δ)-DP is not expressive enough to measure privacy under the group operation. Second, 
the approximation in this theorem is very accurate even for small k. For example, for μ = 1, k = 4, 
the function 1 − (1 − fɛ,0)∘k is within 0.005 of T(Lap(0, 1), Lap(μ, 1)) uniformly over [0, 1]. The 
proof of Proposition 7 is deferred to Appendix A.

3  |   COMPOSITION AND LIMIT THEOREMS

Imagine that an analyst performs a sequence of analyses on a private data set, in which each 
analysis is informed by prior analyses on the same data set. Provided that every analysis alone 
is private, the question is whether all analyses collectively are private, and if so, how the privacy 
degrades as the number of analyses increases, namely under composition. It is essential for a no-
tion of privacy to gracefully handle composition, without which the privacy analysis of complex 
algorithms would be almost impossible.

Now, we describe the composition of two mechanisms. For simplicity, this section writes X 
for the space of data sets and abuse notation by using n to refer to the number of mechanisms 
in composition (the use of n is consistent with the literature on central limit theorems). Let 
M1 : X → Y1 be the first mechanism and M2 : X × Y1 → Y2 be the second mechanism. In brief, 
M2 takes as input the output of the first mechanism M1 in addition to the data set. With the two 
mechanisms in place, the joint mechanism M : X → Y1 × Y2 is defined as

where y1  =  M1(S). Roughly speaking, the distribution of M(S) is constructed from the marginal 
distribution of M1(S) on Y1 and the conditional distribution of M2(S, y1) on Y2 given M1(S) = y1. 
The composition of more than two mechanisms follows recursively. In general, given a sequence of 
mechanisms Mi : X × Y1 × ⋯ × Yi−1 → Yi for i = 1, 2, …, n, we can recursively define the joint mech-
anism as their composition:

Put differently, M(S) can be interpreted as the trajectory of a Markov chain whose initial distribution 
is given by M1(S) and the transition kernel Mi(S, …) at each step.

Using the language above, the goal of this section is to relate the privacy loss of M to that of 
the n mechanisms M1, …, Mn in the f-DP framework. In short, Section 3.1 develops a general 
composition theorem for f-DP. In Section 3.2, we identify a central limit theorem phenomenon of 
composition in the f-DP framework, which can be used as an approximation tool, just like we use 
the central limit theorem for random variables. This approximation is extended to and improved 
for (ɛ, δ)-DP in Section 3.3.

1 − (1− f�,0)
◦k

→ T(Lap(0, 1), Lap(�, 1)).

(8)M(S) = (y1,M2(S, y1)),

M:X → Y1 ×⋯ × Yn.
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3.1  |  A general composition theorem

The main thrust of this subsection is to demonstrate that the composition of private mechanisms 
is closed and tight in the f-DP framework. This result is formally stated in Theorem 4, which 
shows that the composed mechanism remains f-DP with the trade-off function taking the form 
of a certain product. To define the product, consider two trade-off functions f and g that are given 
as f = T(P, Q) and g = T(P′, Q′) for some probability distributions P, P′, Q, Q′.

Definition 5  The tensor product of two trade-off functions f = T(P, Q) and g = T(P′, Q′) is 
defined as

Throughout the paper, write f ⊗ g(α) for (f ⊗ g)(α), and denote by f⊗n the n-fold tensor product 
of f. The well-definedness of f⊗n rests on the associativity of the tensor product, which we will 
soon illustrate.

By definition, f ⊗ g is also a trade-off function. Nevertheless, it remains to be shown that the 
tensor product is well defined: that is, the definition is independent of the choice of distributions 
used to represent a trade-off function. More precisely, assuming f = T(P, Q) = T(P̃, Q̃) for some 
distributions P̃, Q̃, we need to ensure that

We defer the proof of this intuitive fact to Appendix C. Below we list some other useful properties of 
the tensor product of trade-off functions, whose proofs are placed in Appendix D.

1.	 The product ⊗ is commutative and associative.
2.	 If g1 ⩾ g2, then f ⊗ g1 ⩾ f ⊗ g2.
3.	 f ⊗ Id = Id ⊗ f = f, where the identity trade-off function Id(x) = 1 − x for 0 ≤ x ≤ 1.
4.	 (f ⊗ g)−1 = f−1 ⊗ g−1. See the definition of inverse in Equation (3).

Note that Id is the trade-off function of two identical distributions. Property 4 implies that when 
f, g are symmetric trade-off functions, their tensor product f ⊗ g is also symmetric.

Now we state the main theorem of this subsection. Its proof is given in Appendix C.

Theorem 4  Let Mi(·, y1, …, yi−1) be fi-DP for all y1 ∈ Y1, …, yi−1 ∈ Yi−1. Then the n-fold com-
posed mechanism M : X → Y1 × ⋯ × Yn is f1 ⊗ ⋯ ⊗ fn-DP.

This theorem shows that the composition of mechanisms remains f-DP or, put differently, 
composition is closed in the f-DP framework. Moreover, the privacy bound f1  ⊗  ⋯  ⊗  fn in 
Theorem 4 is tight in the sense that it cannot be improved in general. To see this point, consider 
the case where the second mechanism completely ignores the output of the first mechanism. In 
that case, the composition obeys

f ⊗ g: = T(P × P�,Q ×Q�).

T(P × P�,Q ×Q�) = T(P̃ × P�, Q̃ ×Q�).

T(M(S),M(S�)) =T(M1(S)×M2(S),M1(S
�)×M2(S

�))

=T(M1(S),M1(S
�))⊗T(M2(S),M2(S

�)).
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Next, taking neighbouring data sets such that T(M1(S), M1(S′)) = f1 and T(M2(S), M2(S′)) = f2, one 
concludes that f1 ⊗ f2 is the tightest possible bound on the twofold composition. For comparison, the 
advanced composition theorem for (ɛ, δ)-DP does not admit a single pair of optimal parameters ɛ, δ 
(Dwork et al., 2010). In particular, no pair of ɛ, δ can exactly capture the privacy of the composition 
of (ɛ, δ)-DP mechanisms. See Section 3.3 and Figure 5 for more elaboration.

In the case of GDP, composition enjoys a simple and convenient formulation due to the 
identity

where � =
√

�2
1
+ ⋯ + �2n. This formula is due to the rotational invariance of Gaussian distribu-

tions with identity covariance. We provide the proof in Appendix D. The following corollary formally 
summarizes this finding.

Corollary 2  The n-fold composition of μi-GDP mechanisms is 
√

�2
1
+ ⋯ + �2n-GDP.

On a related note, the pioneering work Kairouz et al. (2017) is the first to take the hypoth-
esis testing viewpoint in the study of privacy composition and to use Blackwell's theorem as 
an analytic tool therein. In particular, the authors offered a composition theorem for (ɛ, δ)-DP 
that improves on the advanced composition theorem (Dwork et al., 2010). Following this work, 
Murtagh and Vadhan (2016) provided a self-contained proof by essentially proving the ‘(ɛ, δ) spe-
cial case’ of Blackwell's theorem. In contrast, our novel proof of Theorem 4 only makes use of the 
Neyman–Pearson lemma, thereby circumventing the heavy machinery of Blackwell's theorem. 
This simple proof better illuminates the essence of the composition theorem.

3.2  |  Central limit theorems for composition

In this subsection, we identify a central limit theorem type phenomenon of composition in the 
f-DP framework. Our main results (Theorems 5 and 6), roughly speaking, show that trade-off 
functions corresponding to small privacy leakage accumulate to Gμ for some μ under composi-
tion. Equivalently, the privacy of the composition of many ‘very private’ mechanisms is best 
measured by GDP in the limit. This identifies GDP as the focal privacy definition among the 
family of f-DP privacy guarantees, including (ɛ, δ)-DP. More precisely, all privacy definitions 
that are based on a hypothesis testing formulation of ‘indistinguishability’ converge to the guar-
antees of GDP in the limit of composition. We remark that Sommer et al. (2018) proved a con-
ceptually related central limit theorem for random variables corresponding to the privacy loss. 
This theorem is used to reason about the non-adaptive composition for (ɛ, δ)-DP. In contrast, 
our central limit theorem is concerned with the optimal hypothesis testing trade-off functions 
for the composition theorem. Moreover, our theorem is applicable in the setting of composition, 
where each mechanism is informed by prior interactions with the same database.

From a computational viewpoint, these limit theorems yield an efficient method of ap-
proximating the composition of general f-DP mechanisms. This is very appealing for ana-
lysing the privacy properties of algorithms that are comprised of many building blocks in a 
sequence. For comparison, the exact computation of privacy guarantees under composition 
can be computationally hard (Murtagh & Vadhan, 2016) and, thus, tractable approximations 
are important. Using our central limit theorems, the computation of the exact overall privacy 

G𝜇1
⊗ G𝜇2

⊗⋯⊗ G𝜇n
= G𝜇,
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guarantee f1 ⊗ ⋯ ⊗ fn in Theorem 4 can be reduced to the evaluation of a single mean pa-
rameter μ in a GDP guarantee. We give an exemplary application of this powerful technique 
in Section 5.

Explicitly, the mean parameter μ in the approximation depends on certain functionals of the 
trade-off functions:

All of these functionals take values in [0, +∞], and the last is defined for f such that kl(f) < ∞. In 
essence, these functionals are calculating moments of the log-likelihood ratio of P and Q such that 
f = T(P, Q). In particular, all of these functionals are 0 if f(x) = Id(x) = 1 − x, which corresponds to 
zero privacy leakage. As its name suggests, kl(f) is the Kullback–Leibler (KL) divergence of P and Q 
and, therefore, kl(f) ≥ 0. Detailed elaboration on these functionals is deferred to Appendix D.

In the following theorem, kl denotes the vector (kl(f1), …, kl(fn)) and �2, �3, �3 are defined 
similarly; in addition, ‖·‖1 and ‖·‖2 are the ℓ1 and ℓ2 norms, respectively. Its proof can be found 
in Appendix D.

Theorem 5  Let f1, …, fn be symmetric trade-off functions such that 𝜅3(fi) < ∞ for all 1 ≤ i ≤ n. 
Denote

and assume 𝛾 <
1

2
. Then, for all α  ∈  [γ, 1 − γ], we have

From a technical viewpoint, Theorem 5 can be thought of as a Berry–Esseen type central 
limit theorem. Loosely speaking, the lower bound in Equation (9) shows that the composition 
of fi-DP mechanisms for i = 1, …, n is approximately μ-GDP and, in addition, the upper bound 
demonstrates that the tightness of this approximation is specified by γ. In the case where all fi are 
equal to some f ≠ Id, the theorem reveals that the composition becomes blatantly non-private as 
n → ∞ because � ≍

√
n → ∞. More interesting applications of the theorem, however, are cases 

where each fi is close to the ‘perfect privacy’ trade-off function Id such that collectively μ is con-
vergent and γ vanishes as n → ∞ (see the example in Section 5). For completeness, the condition 
𝜅3(fi) < ∞ (which implies that the other three functionals are also finite) for the use of this the-
orem excludes the case where fi(0) < 1, in particular, fɛ,δ in (ɛ, δ)-DP with δ > 0. We introduce an 
easy and general technique in Section 3.3 to deal with this issue.

Next, we present an asymptotic version of Theorem 5 for composition of f-DP mechanisms. In 
analog to classical central limit theorems, below we consider a triangular array of mechanisms 
{Mn1, …, Mnn}

∞
n=1

, where Mni is fni-DP for 1 ≤ i ≤ n. As with Theorem 5, the proof of Theorem 6 
is relegated to Appendix D.

kl(f ) : = −∫
1

0
log|f �(x)|dx, �2(f ): =∫

1

0
log2|f �(x)|dx

�3(f ) : =∫
1

0
|log|f �(x)| |3 dx, �3(f ): =∫

1

0
|log|f �(x)|+kl(f )|3 dx.

�: =
2‖kl‖1�

‖�2‖1 − ‖kl‖2
2

and � : =
0.56‖�3‖1

(‖�2‖1−‖kl‖2
2
)3/2

(9)G𝜇(𝛼 + 𝛾) − 𝛾 ≤ f1 ⊗ f2 ⊗⋯⊗ fn(𝛼) ≤ G𝜇(𝛼 − 𝛾) + 𝛾 .
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Theorem 6  Let {fni : 1 ≤ i ≤ n}∞
n=1

 be a triangular array of symmetric trade-off functions and 
assume the following limits for some constants K ≥ 0 and s > 0 as n → ∞:

1.	
∑n

i=1 kl(fni) → K;

2.	 max1≤i≤n kl(fni) → 0;

3.	
∑n

i=1 �2(fni) → s2;

4.	
∑n

i=1 �3(fni) → 0.

Then, we have

uniformly for all α  ∈  [0, 1].

Taken together, this theorem and Theorem 4 amount to saying that the composition 
Mn1 ⊗ … ⊗ Mnn is asymptotically 2K/s-GDP. In fact, this asymptotic version is a consequence 
of Theorem 5 as one can show μ → 2K/s and γ → 0 for the triangular array of symmetric trade-
off functions. This central limit theorem implies that GDP is the only parameterized family 
of trade-off functions that can faithfully represent the effects of composition. In contrast, 
neither ɛ- nor (ɛ, δ)-DP can losslessly be tracked under composition—the parameterized fam-
ily of functions fɛ, δ cannot represent the trade-off function that results from the limit under 
composition.

The conditions for use of this theorem are reminiscent of Lindeberg's condition in the central 
limit theorem for independent random variables. The proper scaling of the trade-off functions is 
that both kl(fni) and κ2(fni) are of order O(1/n) for most 1 ≤ i ≤ n. As a consequence, the cumula-
tive effects of the moment functionals are bounded. Furthermore, as with Lindeberg's condition, 
the second condition in Theorem 6 requires that no single mechanism has a significant contribu-
tion to the composition in the limit.

In passing, we remark that K and s satisfy the relationship s =
√
2K  in all examples of the 

application of Theorem 6 in this paper, including Theorems 7 and 11 as well as their corollaries. 
As such, the composition is asymptotically s-GDP. A proof of this interesting observation or the 
construction of a counterexample is left for future work.

3.3  |  Composition of (ɛ, δ)-DP: Beating Berry–Esseen

Now, we extend central limit theorems to (ɛ,  δ)-DP. As shown by Proposition 3, (ɛ,  δ)-DP is 
equivalent to fɛ,  δ-DP and, therefore, it suffices to approximate the trade-off function 
f𝜀1,𝛿1 ⊗ ⋯ ⊗ f𝜀n,𝛿n by making use of the composition theorem for f-DP mechanisms. As pointed 
out in Section 3.2, however, the moment conditions required in the two central limit theorems 
(Theorems 5 and 6) exclude the case where δi > 0.

limn→∞ fn1 ⊗ fn2 ⊗ ⋯ ⊗ fnn(𝛼) = G2K∕s(𝛼)
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To overcome the difficulty caused by a nonzero δ, we start by observing the useful fact that

This decomposition, along with the commutative and associative properties of the tensor product, 
shows

This identity allows us to work on the ɛ part and δ part separately. In short, the ɛ part f𝜀1,0 ⊗ ⋯ ⊗ f𝜀n,0 
now can be approximated by G√

�2
1
+⋯+�2n

 by invoking Theorem 6. For the δ part, we can iteratively 
apply the rule

to obtain f0,𝛿1 ⊗ ⋯ ⊗ f0,𝛿n = f0,1−(1−𝛿1)(1−𝛿2)⋯(1−𝛿n)
. This rule is best seen via the interesting fact 

that f0,δ is the trade-off function of shifted uniform distributions T(U[0, 1], U[δ, 1 + δ]).
Now, a central limit theorem for (ɛ, δ)-DP is just a stone's throw away. In what follows, the 

privacy parameters ɛ and δ are arranged in a triangular array {(�ni, �ni) : 1 ≤ i ≤ n}∞
n=1

.

Theorem 7  Assume

for some nonnegative constants μ, δ as n → ∞. Then, we have

uniformly over [0, 1] as n → ∞.

The proof of this theorem is provided in Appendix D. The assumptions concerning {δni} give 
rise to 1 − (1 − δn1)(1 − δn2)⋯(1 − δnn) → 1 − e−δ. In general, tensoring with f0,δ is equivalent to 
scaling the graph of the trade-off function f toward the origin by a factor of 1 − δ. This property 
is specified by the following formula, and we leave its proof to Appendix D:

In particular, f ⊗ f0,δ is symmetric if f is symmetric. Note that Equations (10) and (11) can be deduced 
by the formula above.

This theorem interprets the privacy level of the composition using Gaussian and uniform 
distributions. Explicitly, the theorem demonstrates that, based on the released information of the 
composed mechanism, distinguishing between any neighbouring data sets is at least as hard as 
distinguishing between the following two bivariate distributions:

(10)f𝜀,𝛿 = f𝜀,0 ⊗ f0,𝛿 .

f𝜀1,𝛿1 ⊗⋯⊗ f𝜀n,𝛿n = (f𝜀1,0 ⊗⋯⊗ f𝜀n,0)⊗ (f0,𝛿1 ⊗⋯⊗ f0,𝛿n).

(11)f0,𝛿1 ⊗ f0,𝛿2 = f0,1−(1−𝛿1)(1−𝛿2)

n∑
i=1

�2ni → �2, max
1≤ i≤n �ni → 0,

n∑
i=1

�ni → �, max
1≤ i≤n �ni → 0

f𝜀n1,𝛿n1 ⊗⋯⊗ f𝜀nn,𝛿nn → G𝜇 ⊗ f0,1−e−𝛿

(12)f ⊗ f0,𝛿(𝛼) =

{
(1−𝛿) ⋅ f (

𝛼

1−𝛿
), 0≤𝛼≤1−𝛿

0, 1−𝛿≤𝛼≤1.

 (0, 1) ×U[0, 1] versus  (�, 1) ×U[1 − e−� , 2 − e−�].
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We note that for small δ, e−δ ≈ 1 − δ. So U[1 − e−δ, 2 − e−δ] ≈ U[δ, 1 + δ].
This approximation of the tensor product f𝜀n1, 𝛿n1 ⊗ ⋯ ⊗ f𝜀nn, 𝛿nn using simple distributions is 

important from the viewpoint of computational complexity. Murtagh and Vadhan (2016) showed 
that, given a collection of {(�i, �i)}ni=1, finding the smallest ɛ such that f𝜀,𝛿 ≤ f𝜀1, 𝛿1 ⊗ ⋯ ⊗ f𝜀n, 𝛿n 
is #P-hard for any δ (#P is a complexity class that is ‘even harder than’ NP; see, e.g. Ch. 9. of Arora 
& Barak, 2009). From the dual perspective (see Section 2.4), this negative result is equivalent to 
the #P-hardness of evaluating the convex conjugate (f𝜀1, 𝛿1 ⊗ ⋯ ⊗ f𝜀n,𝛿n)

∗ at any point. For com-
pleteness, we remark that Murtagh and Vadhan (2016) provided an FPTAS (an approximation 
algorithm is called a fully polynomial-time approximation scheme (FPTAS) if its running time is 
polynomial in both the input size and the inverse of the relative approximation error; see, e.g., 
Ch. 8. of Vazirani, 2013) to approximately find the smallest ɛ in O(n3) time for a single δ. In com-
parison, Theorem 7 offers a global approximation of the tensor product in O(n) time using a 
closed-form expression, subsequently enabling an analytical approximation of the smallest ɛ for 
each δ.

That being said, Theorem 7 remains silent on the approximation error in applications 
with a moderately large number of (ɛ,  δ)-DP mechanisms. Alternatively, we can apply 
Theorem 5 to obtain a non-asymptotic normal approximation to f𝜀1,0 ⊗ ⋯ ⊗ f𝜀n,0 and use 
γ to specify the approximation error. It can be shown that � = O(1∕

√
n) under mild condi-

tions (Corollary D.7). This bound, however, is not sharp enough for tight privacy guaran-
tees if  n is not too large (note that 1∕

√
n ≈ 0.14 if  n = 50, for which exact computation is 

already challenging, if  possible at all). Surprisingly, the following theorem establishes a 
O(1/n) bound, thereby ‘beating’ the classical Berry–Esseen bound. The proof is given in 
Appendix D.

Theorem 8  Fix μ > 0 and let � = �∕
√
n. There is a constant c > 0 that only depends on μ satisfying

for all n ⩾ 1 and c/n ≤ α ≤ 1 − c/n.

As with Theorem 7, this theorem can be extended to approximate DP (δ ≠ 0) by making use of 
the decomposition (10). Our simulation studies suggest that c ≈ 0.1 for μ = 1, which is best illus-
trated in the right panel of Figure 5. Despite a fairly small n=10, the difference between G1 and 
its target f⊗n

𝜀,0
 is less than 0.013 in the pointwise sense. For completeness, it is worthwhile men-

tioning that a better approximation can be obtained by using the Edgeworth expansion in place 
of the central limit theorem (Zheng et al., 2020). Interestingly, our numerical evidence suggests 
the same O(1/n) rate under inhomogeneous composition, provided that ɛ1, …, ɛn are roughly the 
same size. A formal proof, or even a quantitative statement of this observation, constitutes an 
interesting problem for future investigation.

In closing this section, we highlight some novelties in the proof of Theorem 8. Denoting 
p� =

1

1+e�
 and q� =

e�

1+e�
, Kairouz et al. (2017) presented a very useful expression (rephrased in 

our framework):

where B(n, p) denotes the binomial distribution with n trials and success probability p. However, 
directly approximating f⊗n

𝜀,0
 through these two binomial distributions is unlikely to yield an O(1/n) 

G𝜇

(
𝛼 +

c

n

)
−
c

n
≤ f⊗n

𝜀,0
(𝛼) ≤ G𝜇

(
𝛼 −

c

n

)
+
c

n

f⊗n
𝜀,0

= T(B(n, p𝜀),B(n, q𝜀)),
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bound because the Berry–Esseen bound is rate-optimal for binomial distributions. Our analysis, in-
stead, rests crucially on a certain smoothing effect that comes for free in testing between the two 
distributions. It is analogous to the continuity correction for normal approximations to binomial 
probabilities. See the technical details in Appendix D.

4  |   AMPLIFYING PRIVACY BY SUBSAMPLING

Subsampling is often used prior to a private mechanism M as a way to amplify privacy guaran-
tees. Specifically, we can construct a smaller data set S̃ by flipping a fair coin for each individual 
in the original data set S to decide whether the individual is included in S̃. This subsampling 
scheme roughly shrinks the data set by half and, therefore, we would expect that the induced 
mechanism applied to S̃ is about twice as private as the original mechanism M. Intuitively 
speaking, this privacy amplification is due to the fact that every individual enjoys perfect pri-
vacy if the individual is not included in the resulting data set S̃, which happens with probability 
50%.

The claim above was first formalized in Kasiviswanathan et al. (2011) for (ɛ, δ)-DP. Such a 
privacy amplification property is, unfortunately, no longer true for the most natural previous 
relaxations of differential privacy aimed at recovering precise compositions (like concentrated 
differential privacy (CDP) (Bun & Steinke, 2016; Dwork & Rothblum, 2016)). Further modifica-
tions such as truncated CDP (Bun et al., 2018a) have been introduced primarily to remedy this 
deficiency of CDP—but at the cost of extra complexity in the definition. Other relaxations like 
Rényi differential privacy (Mironov, 2017) can be shown to satisfy a form of privacy amplification 
by subsampling, but both the analysis and the statement are complex (Wang et al., 2018).

In this section, we show that these obstacles can be overcome by our hypothesis testing based 
relaxation of differential privacy. Explicitly, our main result is a simple, general and easy-to-
interpret subsampling theorem for f-DP. Somewhat surprisingly, our theorem significantly im-
proves on the classical subsampling theorem for privacy amplification in the (ɛ, δ)-DP framework 
(Ullman, 2017). Note that this classical theorem continues to use (ɛ, δ)-DP to characterize the 
subsampled mechanism. However, (ɛ, δ)-DP is simply not expressive enough to capture the am-
plification of privacy.

4.1  |  A subsampling theorem

Given an integer 1 ≤ m ≤ n and a data set S of n individuals, let ������m(S) be a subset of S that is 
chosen uniformly at random among all the m-sized subsets of S. For a mechanism M defined on 
Xm, we call M(������m(S)) the subsampled mechanism, which takes as input an n-sized data set. 
Formally, we use M ∘ ������m to denote this subsampled mechanism. To clear up any confusion, 
note that intermediate result ������m(S) is not released and, in particular, this is different from 
the composition in Section 3.

In brief, our main theorem shows that the privacy bound of the subsampled mechanism in the 
f-DP framework is given by an operator acting on trade-off functions. To introduce this operator, 
write the convex combination fp := pf + (1 − p) Id for 0 ≤ p ≤ 1, where Id(x) = 1 − x. Note that the 
trade-off function fp is asymmetric in general.

Definition 6  For any 0 ≤ p ≤ 1, define the operator Cp acting on trade-off functions as
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We call Cp the p-sampling operator.

Above, the inverse f −1p  is defined in Equation (3). The biconjugate min{fp, f −1p }∗∗ is derived by 
applying the conjugate as defined in Equation (7) twice to min{fp, f −1p }. For the moment, take for 
granted the fact that Cp(f) is a symmetric trade-off function.

Now, we present the main theorem of this section. Section 4.2 is devoted to proving this result.

Theorem 9  If M is f-DP on Xm, then the subsampled mechanism M ∘ ������m is Cp(f)-DP on Xn, 
where the sampling ratio p = m

n
.

Appreciating this theorem calls for a better understanding of the operator Cp. In effect, Cp 
performs a two-step transformation: symmetrization (taking the minimum of fp and its in-
verse f −1p ) and convexification (taking the largest convex lower envelope of min{fp, f −1p }). The 
convexification step is seen from convex analysis that the biconjugate h** of any function h is 
the greatest convex lower bound of h. As such, Cp(f) is convex and, with a bit more analysis, 
Proposition 1 ensures that Cp(f) is indeed a trade-off function. As an aside, 
Cp(f ) ≤ min{fp, f

−1
p } ≤ fp. See Figure 6 for a graphical illustration.

Next, the following facts concerning the p-sampling operator qualitatively illustrate this pri-
vacy amplification phenomenon.

1.	 If 0 ≤  p ≤  q ≤  1 and f is symmetric, we have f  =  C1(f) ≤  Cq(f) ≤  Cp(f) ≤  C0(f)  =  Id. That 
is, as the sampling ratio declines from 1 to 0, the privacy guarantee interpolates mono-
tonically between the original f and the perfect privacy guarantee Id. This monotonicity 
follows from the fact that g  ≥  h is equivalent to g−1  ≥  h−1 for any trade-off functions g 
and h.

Cp(f ): =min{fp, f
−1
p }∗∗.

F I G U R E  6   The action of Cp. Left panel: f = G1.8, p = 0.35. Right panel: ɛ = 3, δ = 0.1, p = 0.2. The 
subsampling Theorem 9 results in a significantly tighter trade-off function compared to the classical theorem for 
(ɛ, δ)-DP [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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2.	 If two trade-off functions f and g satisfy f ≥ g, then Cp(f) ≥ Cp(g). This means that if a mecha-
nism is more private than the other, using the same sampling ratio, the subsampled mecha-
nism of the former remains more private than that of the latter, at least in terms of lower 
bounds.

3.	 For any 0 ≤ p ≤ 1, Cp(Id) = Id. That is, perfect privacy remains perfect privacy with subsampling.

Explicitly, we provide a formula to calculate Cp(f) for a symmetric trade-off function f. Letting 
x* be the unique fixed point of f, that is f(x*) = x*, we have

This expression is almost self-evident from the left panel of Figure 6. Nevertheless, a proof of this 
formula is given in Appendix E. This formula, together with Theorem 9, allows us to get a closed-
form characterization of the privacy amplification for (ɛ, δ)-DP.

Corollary 3  If M is (ɛ, δ)-DP on Xm, then the subsampled mechanism M ∘ ������m is Cp(fɛ, δ)-DP 
on Xn, where

Above, �� = log(1 − p + pe�), δ′ = pδ and p = m

n
.

For comparison, we now present the existing bound on the privacy amplification by subsam-
pling for (ɛ,δ)-DP. To be self-contained, Appendix E gives a proof of this result, which primarily 
follows Ullman (2017).

Lemma 2  (Ullman, 2017). If M is (ɛ, δ)-DP, then M ∘ ������m is (�′, �′)-DP with �′ and δ′ defined 
in Corollary 3.

Using the language of the f-DP framework, Lemma 2 states that M  ∘ ������m is f�′,�′-DP. 
Corollary 3 improves on Lemma 2 because, as is clear from Equation (14), Cp(f�,�) ≥ f�′,�′. The 
right panel of Figure 6 illustrates Lemma 2 and our Corollary 3 for ɛ = 3, δ = 0.1 and p = 0.2. 
In effect, the improvement is captured by the shaded triangle enclosed by Cp(fɛ, δ) and f�′,�′, 
revealing that the minimal sum of type I and type II errors in distinguishing two neighbour-
ing data sets with subsampling can be significantly lower than the prediction of Lemma 2. 
This gain is only made possible by the flexibility of trade-off functions in the sense that Cp(fɛ,δ) 
cannot be expressed within the (ɛ, δ)-DP framework. The unavoidable loss in the (ɛ, δ)-DP 
representation of the subsampled mechanism is compounded when analysing the composi-
tion of many private mechanisms.

In the next subsection, we prove Theorem 9 by making use of Lemma 2. Its proof implies that 
Theorem 9 holds for any subsampling scheme for which Lemma 2 is true. In particular, it holds 

(13)Cp(f )(x) =

⎧⎪⎨⎪⎩

fp(x), x∈ [0, x∗]

x∗+ fp(x
∗)−x, x∈ [x∗, fp(x

∗)]

f −1p (x), x∈ [fp(x
∗), 1].

(14)Cp(f�,�)(�) =max
{
f��,��(�), 1 − p� − p

e� − 1

e� + 1
− �

}
.
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for the subsampling scheme described at the beginning of this section, that is, independent coin 
flips for every data item.

4.2  |  Proof of the subsampling theorem

The proof strategy is as follows. First, we convert the f-DP guarantee into an infinite collection 
of (ɛ, δ)-DP guarantees by taking a dual perspective that is enabled by Proposition 6. Next, by 
applying the classical subsampling theorem (that is, Lemma 2) to these (ɛ, δ)-DP guarantees, we 
conclude that the subsampled mechanism satisfies a new infinite collection of (ɛ, δ)-DP guaran-
tees. Finally, Proposition 5 allows us to convert these new privacy guarantees back into an f̃ -DP 
guarantee, where f̃  can be shown to coincide with Cp(f).

Proof of Theorem 9  Provided that M is f-DP, from Proposition 6 it follows that M is (ɛ, δ(ɛ))-DP 
with δ(ɛ) = 1 + f*(−eɛ) for all ɛ ⩾ 0. Making use of Lemma 2, the subsampled mechanism 
M ∘ ������m satisfies the following collection of (�′, �′)-DP guarantees for all ɛ ⩾ 0:

Eliminating the variable ɛ from the two parametric equations above, we can relate �′ to δ′ using

which is proved in Appendix E. The remainder of the proof is devoted to showing that (�′, �′)-DP 
guarantees for all �′ ≥ 0 is equivalent to the Cp(f)-DP guarantee.

At first glance, Equation (15) seems to enable the use of Proposition 6. Unfortunately, 
that would be invalid because fp is asymmetric. To this end, we need to extend Proposition 6 
to general trade-off functions. To avoid conflicting notation, let g be a generic trade-off func-
tion, not necessarily symmetric. Denote by x be the smallest point such that g′(x) = −1, that is, 
x = inf{x ∈ [0, 1] : g�(x) = − 1}. As a special instance of Proposition E.1 in the appendix, the 
following result serves our purpose.

Proposition 8  If g(x) ⩾ x and a mechanism M is (ɛ, 1 + g*(−eɛ))-DP for all ɛ ⩾ 0, then M is 
min{g, g−1}**-DP.

The proof of the present theorem would be complete if Proposition 8 can be applied to the 
collection of privacy guarantees in Equation (15) for fp. To use Proposition 8, it suffices to verify 
the condition fp(x) ⩾ x where x is the smallest point such that f �p(x) = − 1. Let x* be the (unique) 
fixed point of f. To this end, we collect a few simple facts:

•	 First, f′(x*) = −1. This is because the graph of f is symmetric with respect to the 45∘ line passing 
through the origin.

•	 Second, x ≤ x∗. This is because f �p(x
∗) = pf �(x∗) + (1 − p) Id�(x∗) = − 1 and, by definition, x 

can only be smaller.

�� = log(1 − p + pe�), �� = p
(
1 + f ∗( − e�)

)
.

(15)�� = 1 + f ∗p ( − e�
�
),
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With these facts in place, we get

by recognizing that fp is decreasing and fp ≥ f. Hence, the proof is complete.

5  |   APPLICATION: PRIVACY ANALYSIS OF STOCHASTIC 
GRADIENT DESCENT

One of the most important algorithms in machine learning and optimization is stochastic gra-
dient descent (SGD). This is an iterative optimization method used to train a wide variety of 
models, for example, deep neural networks. SGD has also served as an important benchmark in 
the development of private optimization: as an iterative algorithm, the tightness of its privacy 
analysis crucially depends on the tightness with which composition can be accounted for. The 
analysis also crucially requires a privacy amplification by subsampling argument.

The first asymptotically optimal analysis of differentially private SGD was given by Bassily 
et al. (2014). Because of the inherent limits of (ɛ, δ)-DP, however, this analysis stops short of 
giving meaningful privacy bounds for realistically sized data sets. This is in part what motivated 
the development of divergence based relaxations of differential privacy. Unfortunately, these re-
laxations cannot be directly applied to the analysis of SGD due to the lack of a privacy ampli-
fication by subsampling theorem. In response, Abadi et al. (2016) circumvented this challenge 
by developing the moments accountant—a numeric technique tailored specifically to repeated 
application of subsampling, followed by a Gaussian mechanism—to give privacy bounds for SGD 
that are strong enough to give non-trivial guarantees when training deep neural networks on real 
data sets. But this analysis is ad-hoc in the sense that it uses a tool designed specifically for the 
analysis of SGD.

In this section, we use the general tools we have developed so far to give a simple and im-
proved analysis of the privacy of SGD. In particular, the analysis rests crucially on the composi-
tional and subsampling properties of f-DP.

5.1  |  Stochastic gradient descent and its privacy analysis

Letting S = (x1, …, xn) denote the data set, consider minimizing the empirical risk

over the parameter θ, where L(θ, xi) denotes a loss function. At iteration t, a set It of size m is selected 
uniformly at random from {1, 2, …, n}. Taking learning rate ηt, SGD seeks to minimize the empirical 
risk by running

from an initial point θ0.

fp(x) ⩾ fp(x
∗) ⩾ f (x∗) = x∗ ⩾ x

1

n

n∑
i=1

L(�, xi)

�t+1 = �t − �t ⋅
1

m

∑
i∈ It

∇�L(�t , xi)
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A private variant of this optimization algorithm is described in Algorithm 1. We refer to this pri-
vate algorithm as NoisySGD, which can be viewed as a repeated composition of Gaussian mecha-
nisms operating on subsampled data sets. To analyse the privacy of NoisySGD, we start by building 
up the privacy properties from the inner loop. Let V be the vector space where parameter θ lives in 
and M : Xm × V → V be the mechanism that executes lines 4–7 in Algorithm 1. Here m denotes the 
batch size. In effect, what M does in iteration t can be expressed as

where SIt is the subset of the data set S indexed by It. Next, we turn to the analysis of the subsampling 
step (line 3) and use M̃ to denote its composition with M, that is, M̃ =M ◦ ������m. Taken together, 
M̃ executes lines 3–7 and maps from Xn × V to V.

The mechanism we are ultimately interested in

is simply the composition of T copies of M̃. To see this fact, note that the trajectory (θ1, θ2, …, θT) is 
obtained by iteratively running

for j = 0, …, T − 1. Let M be f-DP. Straightforwardly, M̃ is Cm/n(f)-DP by Theorem 9. Then, from the 
composition theorem (Theorem 4), we can readily prove that NoisySGD is Cm/n(f)⊗T-DP.
Hence, it suffices to give a bound on the privacy of M. For simplicity, we now focus on a single 
step and drop the subscript t. Recognizing that changing one of the m data points only affects one 
v(i), the sensitivity of 1

m

∑
iv
(i)
t  is at most 2C

m
 due to the clipping operation. Making use of Theorem 

1, adding Gaussian noise N(0, �2 ⋅ 4C
2

m2 I) to the average gradient renders this step 1
�
-GDP. Since 

that the gradient update following the gradient averaging step is deterministic, we conclude that M 
satisfies 1

�
-GDP.

M(SIt , �t) = �t+1,

��������:Xn
→V ×V ×⋯×V

S ↦ (�1, �2,…, �T )

�j+1 = M̃(S, �j)
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In summary, the discussion above has proved the following theorem:

Theorem 10  Algorithm 1 is Cm∕n(G𝜎−1 )
⊗T-DP.

To clear up any confusion, we remark that this Cm∕n(G𝜎−1 )
⊗T-DP mechanism does not release 

the subsampled indices.
The use of Theorem 10 relies on an efficient evaluation of Cm∕n(G𝜎−1 )

⊗T. Our central limit theo-
rems provide an analytical approach to approximating this tensor product and the approximation is ac-
curate for large T. The next two subsections present two such results, corresponding to our two central 
limit theorems (Theorems 5 and 6), respectively. An asymptotic privacy analysis of NoisySGD is given 
in Section 5.2 by developing a general limit theorem for composition of subsampled mechanisms, and 
an illustration of this result is shown in Figure 7. A Berry–Esseen type analysis is developed in Section 
5.3. The implementation of our privacy analysis of NoisySGD is available in the TensorFlow pri-
vacy package (https://github.com/tensorflow/privacy); see details in https://github.com/tenso​rflow/​
priva​cy/blob/maste​r/tenso​rflow_privacy/privacy/analysis/gdp_accountant.py.

5.2  |  Asymptotic privacy analysis

In this subsection, we first consider the limit of Cp(f)⊗T for a general trade-off function f, then 
plug in f = G�−1 for the analysis of NoisySGD. The more general approach is useful for analysing 
other iterative algorithms.

Recall from Section 4 that a p-subsampled f-DP mechanism is Cp(f)-DP, where Cp(f) is defined as

Cp(f )(x) =

⎧⎪⎨⎪⎩

fp(x), x∈ [0, x∗]

x∗+ fp(x
∗)−x, x∈ [x∗, fp(x

∗)]

f −1p (x), x∈ [fp(x
∗), 1],

F I G U R E  7   Comparison of the Gaussian differential privacy bounds derived from our method, and the 
(ɛ, δ)-DP bounds derived using the moments accountant (Abadi et al., 2016), which is essentially based on Rényi 
differential privacy (Mironov, 2017). All three experiments run Algorithm 1 on the entire MNIST data set with 
n = 60,000 data points, batch size m = 256, learning rates ηt set to 0.25, 0.15 and 0.25, respectively, and clipping 
thresholds C set to 1.5, 1.0 and 1.5, respectively. The red lines are obtained via Corollary 4, while the blue 
dashed lines are produced by the tensorflow/privacy library. See https://github.com/tenso​rflow/​privacy for the 
details of the setting and more experiments in follow-up work (Bu et al., 2019) [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://github.com/tensorflow/privacy/blob/master/tensorflow
https://github.com/tensorflow/privacy/blob/master/tensorflow
https://github.com/tensorflow/privacy
https://onlinelibrary.wiley.com/
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where x* is the unique fixed point of f. We will let the sampling fraction p tend to 0 as T approaches 
infinity. In the following theorem, a2+ is a short-hand for (max{a, 0})2.

Theorem 11  Suppose f is a symmetric trade-off function such that f(0)  =  1 and 
∫ 10 (f �(x)+1)4 dx < +∞. Furthermore, assume p

√
T → p0 as T  →  ∞ for some constant 

p0 > 0. Then we have the uniform convergence

as T → ∞, where

The proof is deferred to Appendix F. This theorem has implications for the design of iterative 
private mechanisms involving subsampling as a subroutine. One way to bound the privacy of 
such a mechanism is to let the sampling ratio p go to zero as the total number of iterations T goes 
to infinity. The theorem says that the correct scaling between the two values is p ∼ 1∕

√
T  and, 

furthermore, gives an explicit form of the limit.
In order to analyse NoisySGD, we need to compute the quantity �2+(G�). This can be done by 

directly working with its definition. In Appendix F, we provide a different approach by relating 
�2+(f ) to χ2-divergence.

Lemma 3  We have

When using SGD to train large models, we typically perform a very large number of iterations, 
so it is reasonable to consider the parameter regime in which n→∞, T→∞. The batch size can also 
vary with these quantities. The following result is a direct consequence of Theorems 10 and 11 
and Lemma 3.

Corollary 4  If m
√
T∕n→ c for a constant c > 0, then NoisySGD is asymptotically μ-GDP with

The condition required in this theorem is more general than that required in the analysis 
of private SGD by Bassily et al. (2014), which assumes m = 1 and T = O(n2). Moreover, we 
note that m

n
⋅

√
T  in deep learning research is generally quite small. The convention in this 

literature is to reparameterize the number of gradient steps T by the number of ‘epochs’ E, 
which is the number of sweeps of the entire data set. The relationship between these param-
eters is that E  =  Tm/n. In this reparameterization, our assumption is that Em/n  →  c2. 
Concretely, the AlexNet (Krizhevsky et al., 2012) sets the parameters as m = 128, E ≈ 90 on 
the ILSVRC-2010 data set with n ≈ 1.2 × 106, leading to Em/n < 0.01. Many other prominent 
implementations also lead to a small value of Em/n. See the webpage of the Gluon CV Toolkit 

Cp(f )
⊗T

→ G
p0

√
2𝜒2+(f )

�2
+
(f ) = ∫

1

0
(|f �(x)|−1)2

+
dx.

�2
+
(G�) = e�

2
⋅Φ(3�∕2) + 3Φ( − �∕2) − 2.

� =
√
2c ⋅

�
e�−2 ⋅Φ(1.5�−1) + 3Φ( − 0.5�−1) − 2.
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(He et al., 2018; Zhang et al., 2019) for a collection of such hyperparameters in computer vi-
sion tasks.

5.3  |  A Berry–Esseen privacy bound

Now, we apply the Berry–Esseen style central limit theorem (Theorem 5) to the privacy analy-
sis of NoisySGD, highlighting the advantage of giving sharp privacy guarantees. However, the 
shortcoming is that the expressions that it yields are more unwieldy: they are computer evalu-
able, so usable in implementations, but do not admit simple closed forms.

The individual components in Theorem 5 have have the form Cp(Gμ) with p = m/n, � = �−1 . It 
suffices to evaluate the moment functionals on Cp(Gμ). This is done in the following lemma, with 
its proof given in Appendix F.

Lemma 4  Let Z(x) = log(p ⋅ e�x−�
2∕2 + 1 − p) and �(x) = 1√

2�
e−x

2∕2 be the density of the stan-

dard normal distribution. Then

By plugging these expressions into Theorem 5, we get

Corollary 5  Let p = m/n, � = �−1 and

Then, NoisySGD is f-DP with f (�) =max{G�̃(� + �) − � , 0}.

We remark that G�̃ can be set to 0 in (1, +∞) so that f is well defined for α > 1−γ.

6  |   DISCUSSION

In this paper, we have introduced a new framework for private data analysis that we refer to as 
f-differential privacy, which generalizes (ɛ, δ)-DP and has a number of attractive properties that 
escape the difficulties of prior work. This new privacy definition uses trade-off functions of hy-
pothesis testing as a measure of indistinguishability of two neighbouring data sets rather than a 

kl
(
Cp(G�)

)
= p ∫

+∞

�∕2
Z(x) ⋅

(
�(x−�)−�(x)

)
dx

�2
(
Cp(G�)

)
= ∫

+∞

�∕2
Z2(x) ⋅

(
p�(x−�)+ (2−p)�(x)

)
dx

�3
(
Cp(G�)

)
= ∫

+∞

�∕2

|||Z(x)−kl
(
Cp(G�)

)|||
3
⋅ (p�(x−�)+ (1−p)�(x)) dx

+∫
+∞

�∕2

|||Z(x)+kl
(
Cp(G�)

)|||
3
⋅�(x) dx.

�̃ =
2
√
T ⋅ kl

�
Cp(G�)

�
�

�2
�
Cp(G�)

�
− kl2

�
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0.56√
T
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Cp(G�)

�
�
�2

�
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−kl2
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few parameters as in prior differential privacy relaxations. Our f-DP retains an interpretable hy-
pothesis testing semantics and is expressive enough to losslessly reason about composition, post-
processing and group privacy by virtue of the informativeness of trade-off functions. Moreover, 
f-DP admits a central limit theorem that identifies a simple and single-parameter family of pri-
vacy definitions as focal: Gaussian differential privacy. Precisely, all hypothesis testing based 
definitions of privacy converge to Gaussian differential privacy in the limit under composition, 
which implies that Gaussian differential privacy is the unique such definition that can tightly 
handle composition. The central limit theorem and its Berry–Esseen variant give a tractable ana-
lytical approach to tightly analysing the privacy cost of iterative methods such as SGD. Notably, 
f-DP is dual to (ɛ, δ)-DP in a constructive sense, which gives the ability to import results proven 
for (ɛ, δ)-DP. This powerful perspective allows us to obtain an easy-to-use privacy amplification 
by subsampling theorem for f-DP, which in particular significantly improves on the state-of-the-
art counterpart in the (ɛ, δ)-DP setting.

We see several promising directions for future work using and extending the f-DP framework. 
First, Theorem 8 can possibly be extended to the inhomogeneous case where trade-off functions 
are different from each other in the composition. Such an extension would allow us to apply 
the central limit theorem for privacy approximation with strong finite-sample guarantees to a 
broader range of problems. Second, it would be of interest to investigate whether the privacy 
guarantee of the subsampled mechanism in Theorem 9 can be improved for some trade-off func-
tions. Notably, we have shown in Appendix E that this bound is tight if the trade-off function 
f = 0, that is, the original mechanism is blatantly non-private. Third, the notion of f-DP naturally 
has a local realization where the obfuscation of the sensitive information is applied at the indi-
vidual record level. In this setting, what are the fundamental limits of estimation with local f-DP 
guarantees (Duchi et al., 2018)? In light of Duchi and Ruan (2018), what is the correct complexity 
measure in local f-DP estimation? If it is not the Fisher information, can we identify an alterna-
tive to the Fisher information for some class of trade-off functions? Moreover, we recognize that 
an adversary in differentially private learning may set different pairs of target type I and type II 
errors. For example, an adversary that attempts to control type I and II errors at 10% and 10%, 
respectively, can behave very differently from one who aims to control the two errors at 0.1% and 
99%, respectively. An important question is to address the trade-offs between resources such as 
privacy and statistical efficiency and target type I and type II errors in the framework of f-DP.

Finally, we wish to remark that f-DP can possibly offer a mathematically tractable and flex-
ible framework for minimax estimation under privacy constraints (see, for example, Bun et al., 
2018b; Cai et al., 2019; Dwork et al., 2015). Concretely, given a candidate estimator satisfying 
(ɛ,  δ)-DP appearing in the upper bound and a possibly loose lower bound under the (ɛ,  δ)-
DP constraint, we can replace the (ɛ, δ)-DP constraint by the f-DP constraint where f is the 
tightest trade-off function characterizing the estimation procedure. As is clear, the f-DP con-
straint is more stringent than the (ɛ, δ)-DP constraint by recognizing the primal-dual conver-
sion (see Proposition 6). While the upper bound remains the same as the estimator continues 
to satisfy the new privacy constraint, the lower bound can be possibly improved due to a more 
stringent constraint. It would be of great interest to investigate to what extent this f-DP based 
approach can reduce the gap between upper and lower bounds minimax estimation under 
privacy constraints.

Ultimately, the test of a privacy definition lies not just in its power and semantics, but also 
in its ability to usefully analyse diverse algorithms. In this paper, we have given convincing evi-
dence that f-DP is up to the task. We leave the practical evaluation of this new privacy definition 
to future work.
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7  |   SUPPLEMENTAL MATERIALS

Due to space constraints, we have relegated proofs of theorems and other technical details to 
the on-line appendices Appendix A–Appendix F in the Supplement to ‘Gaussian Differential 
Privacy’. Python code for analysing the privacy loss of SGD in the f-DP framework is available 
at https://github.com/tenso​rflow/​priva​cy/blob/maste​r/tenso​rflow_privacy/privacy/analysis/
gdp_accountant.py.
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SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the 
publisher’s website.
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I wholeheartedly welcome the proposal of Dong, Roth and Su to revisit the foundations of dif-
ferential privacy from the hypothesis testing point of view. Designing formal privacy definitions 
that can be interpreted by relevant stakeholders and decision makers is a necessary condition 
for adoption outside the technical literature, and basing such formulations on the trade-off be-
tween Type I and Type II errors in a classical hypothesis testing problem is (probably) as close 
as one can get to this goal. It was already well known that hypothesis testing interpretations 
can be derived from differential privacy and some of its variants, but the present work makes 
an interesting twist: it introduces new privacy definitions—namely, f-DP and its focal instance 
Gaussian DP—where hypothesis testing is front and centre, and shows this has many interest-
ing consequences.

The first remarkable observation is that these new definitions capture all the desirable prop-
erties of prior differential privacy definitions (e.g. composition, amplification by sampling, 
Gaussian mechanism) in a tight analytical way. This should be contrasted with the limitations of 
other well-established definitions; for example, ε-DP cannot accommodate the Gaussian mech-
anism, (ε, δ)-DP leads to cumbersome composition formulas, and amplification by sampling in 

https://doi.org/10.1111/rssb.12454
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Rényi DP is plagued with technical difficulties. On a qualitative level, we care about these prop-
erties because they allow us to analyse complex algorithms in terms of their building blocks. 
More importantly, having a definition that provides quantitatively tighter privacy guarantees is 
crucial when tuning hyperparameters to obtain the best possible trade-off between privacy and 
utility.

The limit theorems for composition and group privacy proved in the paper are quite interest-
ing, most notably because they improve our understanding of these phenomena at an intuitive 
level and bring to light some underlying regularities in operations that are routinely encountered 
in differential privacy. In particular, the focality of Gaussian DP under the composition CLT en-
ables more precise back-of-the-envelope computations in the course of algorithm design, and the 
error bounds in its Berry–Esseen version can serve as the building block for novel, more efficient 
so-called privacy accounting algorithms.

On a more technical note, I was surprised by the significant gap between the privacy ampli-
fication properties of standard DP and Gaussian DP. This gap suggests we might not yet fully 
understand the quantitative properties of this important primitive, and point to interesting di-
rections for future research. In more practical terms, understanding privacy amplification by 
sampling is key to provide tight guarantees for differentially private stochastic gradient descent 
(DP-SGD) algorithms. The analysis of this algorithm based on Gaussian DP is very illuminating 
in terms of the gap with respect to the moments accountant technique. And although this gap 
can be reduced by considering the whole collection of (ε, δ(ε))-DP guarantees that moments 
accountant provide—as opposed to using a single value of � as is done in the paper—the remain-
ing gap is still significant. I would encourage practitioners to take note of this and start using 
Gaussian DP accounting in their DP-SGD implementations.

Overall, I think it is fair to say that the work of Dong, Roth and Su represents a significant 
leap in our understanding of the hypothesis testing viewpoint on differential privacy. More im-
portantly, it indicates that this point of view has many other practical benefits besides the obvious 
interpretability gains. I look forward to seeing more Guassian DP analyses of complex privacy-
preserving algorithms in the coming years.
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I congratulate the authors for a remarkable foundational paper that introduces an appealing 
new variant of differential privacy. It elegantly frames the problem of private data releases as a 
hypothesis testing problem. The impressive set of results established in this work sheds new light 
into the fundamental problem of composition. It demonstrates how the f-differential privacy 
framework successfully overcomes inevitable drawbacks of existing alternatives and establishes 
Gaussian differential privacy (GDP) at the core of this theory. One can expect the latter to become 
a dominant approach in this literature given its appealing intuitive hypothesis testing interpreta-
tion, exact composition property, central limit role for composition and computational tractabil-
ity for approximating privacy losses.

Arguably one of the main practical benefits of the refined analysis of composition developed 
in this work is its direct application in numerous machine learning tasks via a differentially pri-
vate algorithms in the of spirit stochastic gradient descent (SGD). See Bu et al. (2020) for interest-
ing applications in deep learning. I shall focus my discussion on three important questions than 
one may ask when considering such a noisy SGD algorithm.

1.	 The suggested algorithm clips the gradient at some prespecified level. How do we choose 
this clipping constant in practice?

2.	 What can we say about the convergence of the noisy algorithm?
3.	 What are the statistical properties of the resulting estimators?

I attempt to provide some partial answers by considering a parametric M-estimation frame-
work. Let �̂ be defined as 

 where x1, ⋯, xn ∈  ⊂ ℝm are i.i.d. according to F�0 and Fn denotes the empirical distribution 
function. Note that convexity of ρ typically guarantees the uniqueness of �̂ and that if ρ is differen-
tiable, �̂ is also implicitly defined as the solution of the equation 

�̂ = argmin
�∈Θ

n(�) = argmin
�∈Θ

1

n

n∑
i=1

�(xi, �) = argmin
�∈Θ

�Fn
[�(X , �)],
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 where Ψ(x, �) = �

��
�(x, �). This class of estimators is a strict generalization of the class of regular 

maximum likelihood estimators which are recovered when n(�) is the log-likelihood, that is when 
we take �(x, �) = − log f�(x). In robust statistics, M-estimators defined through a function Ψ that is 
bounded in x ∈  are particularly appealing. Indeed, a bounded Ψ guarantees that the M-estimator 
has a bounded influence function and therefore ensures that it is robust to the presence of a small 
fraction of outliers in the data (Hampel et al., 1986; Huber & Ronchetti, 2009). In the context of noisy 
SGD it is also critical to have supx,𝜃‖Ψ(x, 𝜃)‖2 ≤ B < ∞ since the bound B is used in the calibration 
of the privacy inducing noise. See lines 6–7 of noisySGD.

With the above setting in mind, let us try to answer the first question. Note that if we use noisy 
SGD to compute a maximum likelihood estimator we will in fact be computing a differentially 
private counterpart of the clipped likelihood estimator 

 where hc(z) = zmin{1, c

‖z‖2 } is the multivariate Huber function (Hampel et al., 1986, p.239). While 

clipping guarantees robustness via a bounded influence function, the resulting estimators are in 
general not consistent since the estimating equations are in general not unbiased i.e. 
�F�0

[hc
(
∇logf (xi, �0)

)
] ≠ 0. Hence, even though gradient clipping is a common suggestion in the 

differential privacy literature, it is not the most appealing from a statistical viewpoint. A possible 
solution is to consider a diverging clipping constant c, but a natural simple alternative is to use in-
stead a consistent bounded influence M-estimator. In the context of normal linear regression, we 
observe {yi, xi}ni=1 and obtain the clipped least squares estimator

 In this particular case the clipped estimator happens to be a consistent estimator because of the 
symmetric errors assumed by the model. One could also consider a differentially private analogue of 
a Mallows’ type estimator 

 where �c(r) =max{ − c, min(r, c)} is the Huber function.
In order to give some insights into the next two questions, I will first consider an alternative 

noisy gradient descent (GD) algorithm defined by the iterates 

 One can give a clear answer to questions 2 and 3 for noisy GD based on recent results of a collabo-
rative work (Avella-Medina et al., 2021). They also give an idea of what might be expected for noisy 
SGD. The following informal statement relates the properties of the Kth iterate of noisy GD �(K) to 
those of the M-estimator �̂ defined in Equation (1).
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1

n
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Theorem 1  Assuming local strong convexity, after K ≥ C log n iterations of NGD we have 

that �(K) is μ-GDP and �(K) − �0 = �̂ − �0 +Op

�√
Kp

�n

�
.We can draw a few important conclusions 

from this theorem. We see that O( log  n) steps suffice in order to guarantee that the iterates �(K) 
approaches �̂ up to an error that is proportional to the privacy inducing noise added to the usual 
GD step. An intuitive interpretation of this result from standard optimization theory is that, 
under local strong convexity, GD requires K to be of the order O( log  (1/Δ)) if we want to guar-
antee the optimization error to be ‖�(K) − �̂‖2 = O(Δ). This means that O( log  n) steps suffice if 
we want to make the optimization error be of the same order as the privacy inducing noise. The 
theorem proves that this is also the case for noisy GD. Importantly, as long as 

√
Kp

�
√
n
→ 0 the added 

statistical cost of μ-GDP is negligible in the sense that �(K) = �̂ + op(1∕
√
n) and hence under stan-

dard regularity conditions �(K) is also asymptotically normally distributed. In fact, if we translate 
the μ-GDP guarantee into a (ɛ, δ)-DP guarantee, we see that the rates of convergence of noisy GD 
match the minimax lower bound rates of Cai et al. (2021) up to 

√
logn factor as long as we take 

K = C log n iterations. Thus noisy GD achieves optimal rates of convergence among the class of 
(ɛ, δ)-DP estimators.

Let me now return to noisy SGD and conclude by pointing out some challenges. Indeed, the 
theory of noisy GD combined with standard SGD suggest a couple of possible statistical issues. 
A first potential problem arises from the well-known fact that the standard SGD converges at a 
slower rate than GD (Bubeck, 2015). More precisely, under strong convexity, O(logn) steps of GD 
give the same accuracy as O(

√
n) steps of GD. This is not an issue in classical settings, but the the-

ory of noisy GD suggests it might be a problem for noisy SGD since the number of iterations has 
a direct impact on the magnitude of the noise term. A second important problem is that a fixed 
mini-batch size m also entails that we have a non-vanishing noise term in line 7 of noisySGD. 
Here again the theory of noisy GD suggests that we might not have consistent noisy SGD estima-
tors unless m → ∞ and the cost of privacy might not negligible unless we also have that m

2

n
→ ∞. 	

I think that these problems deserve further attention in future research.
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We congratulate Drs. Dong, Roth and Su for advancing our understanding of differential privacy 
from a hypothesis-testing perspective. As more personal data are collected for research, we need 
to mathematically understand when an adversary may be tempted to identify individuals and 
obtain sensitive information about them. This is especially true when working with patient data 
in healthcare, as respecting patient consent and privacy is imperative and subject to strong legal 
and regulatory constraints. In addition, not all data modalities collected in clinical trials are uni-
formly suitable for anonymization or de-identification. For example, only a few genetic markers 
or peripheral information present in medical images may be sufficient to uniquely re-identify 
individuals. As a result, patient privacy requirements can severely limit our ability to link data 
across clinical studies and build complex data sets to improve our understanding of disease and 
response to treatments.

Despite the progress made so far, there is limited work on privacy-preserving techniques 
with applications to clinical research. When computing differentially private data summaries or 
model parameters on clinical data sets, we trade data utility off for privacy guarantees through 
randomized algorithms that are parameterized by a ‘privacy budget’. Data from clinical trials 
present both unique challenges and opportunities in this context: for one, knowledge of random-
ization by study design may allow us to suppress data with little impact on the summary being 
computed. For another, clinical trial data sets with only hundreds or thousands of participants 
are much smaller than other types of data typically considered in the context of differential pri-
vacy (insurance data, electronic health records, etc.), making it challenging to retain data utility 
as well as privacy.

These specific constraints raise interesting questions as to how the proposed methods can 
be applied to clinical research, for example around the management of the differential privacy 
budget. As such, we believe it would be highly useful to study the practical implications of µ/f-DP 
and ε-DP for small clinical data sets. For example, could we address the trade-offs between data 
utility and preserving privacy in the framework of f-DP while acknowledging the customary 
hypothesis-testing approaches in clinical research where power is maximized while controlling 
the Type I error rate at a specified threshold. Moreover, we believe it would be interesting to study 
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if there are non-trivial ways to utilize the rules of composition in f-DP for optimizing complex 
sets of private data summaries, or the training process of private generative models.
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Due to the emerging concerns of individual confidentiality, differential privacy has been a hot 
topic in recent years. Most papers talk about the applications, and this article stands out by fo-
cusing on the mathematical analysis and proving the asymptotic bounds. For the readers who 
are unfamiliar with differential privacy, I recommend a shorter article (Snoke & Bowen, 2020) as 
a starting point to learn about the context.

Since the authors used subsampling to amplify privacy guarantees, I wonder if they have 
considered moving to fully synthetic data to preserve perfect privacy for all individuals. In this 
way, individuals cannot be identified from the synthetic data because the data do not contain real 
people (Howe et al., 2017; Jarmin et al., 2014). Can the hypothesis testing framework be applied 
on proving that the synthetic data have the same key statistical properties as the original data?

Another question I have is how Gaussian differential privacy preserves data usability. The 
paper discussed the trade-off in terms of Type I and Type II errors from the attacker's perspec-
tive, so I am curious about the trade-off between privacy guarantees and data usability, that is 

1Disclaimer: The opinions and views expressed here are those of the author and do not necessarily state or reflect those 
of Microsoft. 
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the privacy budget. Researchers have expressed concerns about the accuracy of Census public 
release data, due to the implementation of differential privacy and disclosure avoidance methods 
(Hauer & Santos-Lozada, 2021; Ruggles et al., 2019).

Last but not least, can the proposed Gaussian Differential Privacy framework be applied to 
COVID-19 contact tracing data (Cho et al., 2020) in the future? Do the authors anticipate any 
major challenges in the implementation?
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The remarkable new contribution is the usage of trade-off functions between error types I and 
II, which leads to the generalization of differential privacy. It is intuitively well visualized by a 
kind of inverse receiver operating characteristic. Via the central limit theorem (Theorems 4), it is 
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shown that a tensor product of symmetric trade-off functions with finite first to third moments 
is bounded by a Gaussian trade-off function. The proofs in section D incorporate the classical 
Berry–Esseen theorem as theorem D.4.

Shortly in section 3.2, the topic of requirement of a finite third moment is touched, which is 
crucial for the Berry–Esseen central limit theorems. For transferring the results of the DP central 
limit theorem (Theorems 4 and 5) to (ε, δ)-DP, there the question is taken up again to prove con-
vergence to a Gaussian trade-off function in section 3.3.

In literature, some generalizations of Berry–Esseen exist, for example by Petrov (1975), where 
Theorem 5 states in a simplified form the following:

Let Xi,…,Xn be random variables with mean zero and variance 1. Let Fn (x) = P(n−
1
2
∑n

i=1 < x) . 
Let g() be a non-negative, non-decreasing and even function in the interval x > 0 such that also x

g(x)
 is 

non-decreasing in the interval x > 0. For E[X2
1
g(X1)] <∞ it holds that

for some absolute positive constant A. Results might also be extended to different variances as shown 
in Petrov (1975) and also non-zero means as shown in DasGupta (2008).

Using such a third-moment-free central limit theorem, the (ε, δ)-DP trade-off function could 
also be covered by the central limit theorem as well as a potentially larger scope of trade-off 
functions. The proofs do not require a specific value for the constant, such that a consideration 
of this Berry–Esseen extension might be an option, whereas handling of g() might be a limiting 
issue.
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We congratulate Professors Dong, Roth and Su on their compelling work on Gaussian Differential 
Privacy.

In official statistics, the p%-rule (Hundepoel et al., 2012) is widely used to protect tabular data. 
In recent work (Hut et al., 2020) we adapted this concept to thematic maps, for example, of en-
ergy consumption per company. Usually such maps are drawn directly from an underlying table 
that is protected from disclosure. The resulting colour-coded map, however, is, by construction, 
discretised in regions defined by the cells in the table. These geographic regions are usually large, 
corresponding, for instance, to municipalities. The resulting protection is very conservative, lead-
ing to a map with reduced utility. Therefore, there is a need for smooth thematic maps.

One might use the Nadaraya–Watson kernel weighted average. This procedure, however, is 
not necessarily safe. Indeed, suppose that an attacker is able to read off the plotted, smoothed, 
values of the variables of interest at all measurement locations. Then their original values satisfy 
a linear system which in many cases (including that of a Gaussian kernel) can be solved exactly 
if the measurement locations are distinct.

To protect sensitive information we propose to add correlated Gaussian noise E with variance 
τ and map 

 Here the gi > 0 are the values of the variable at distinct locations ri in a planar region D, κ is the 
Gaussian kernel and h > 0 the bandwidth that determines the amount of smoothing.

The counterpart of the p%-rule is as follows. Let 0 ≤ α < 1. Then a map is unsafe if 

∑
i=1,⋯,Ngi�((r − ri)∕h) + E(r)∑

i=1,⋯,N�((r − ri)∕h)
, r ∈ D.

max
1=1,⋯,N

P

(|||||
�gi − gi
gi

|||||
<

p

100

)
> 𝛼.
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In words, a map is safe when small relative errors happen with small probability. We proved that if 

 where Kh = (�((ri−rj)∕h))i,j=1,⋯N, the resulting thematic map is safe.
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The authors are to be congratulated on a valuable and thought-provoking contribution motivat-
ing this new framework for private data analysis, the f-differential privacy. A key aspect is the use 
of trade-off functions of hypothesis testing as a measure of indistinguishability of two or group 
neighbouring data sets.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits 
use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or 
adaptations are made.
© 2022 The Authors. Journal of the Royal Statistical Society: Series B (Statistical Methodology) published by John Wiley & Sons Ltd on 
behalf of Royal Statistical Society.

https://doi.org/10.1111/rssb.12460
mailto:﻿
mailto:mateu@uji.es
http://creativecommons.org/licenses/by-nc-nd/4.0/


48  |      DISCUSSION CONTRIBUTION

I would like to frame this contribution within the context of big data together with data 
mining and data science. As the authors point out, an increasing and unprecedented wealth 
of methods concern individual data recorded from personal devices or even private or public 
resources. In this large-scale and big data context, privacy in terms of anonymous personal 
information is key for any legal and serious data analysis. Modern data collection techniques 
allow tracking objects (persons) continuously. This means that we do not only know the cur-
rent location of a moving object, but we also track the objects over time. A set of some tracks 
from different moving objects may be considered a trajectory pattern. Indeed, studying the 
behaviour of moving objects over time and their interaction, either between objects or with 
environment, plays a crucial role in understanding how they use space and more importantly 
how they interact with each other. In this context, a snapshot of a trajectory pattern might be 
seen as a spatial point pattern.

I pose the following two cases. One is a data set where the individual events are themselves 
trajectories (functions) moving within a city. We need algorithms for privacy guarantee and to get 
groups of (trajectory) data anonymised. In a related context, assume the events are exact space–
time coordinates of infected people from an infectious disease. So we have a spatiotemporal point 
pattern and we need to test if the ratio of the first-order intensity of the infected group against 
that of the control group behaves in a particular way. In other words, we need to test if groups of 
space–time events are distinguishable from other events. These two problems deal with data in 
space–time, and pose problems on privacy over space–time locations. I wonder if GDP applies 
over this spatial context. Also, a natural question is how f-DP or GDP can be used in contexts 
where type I and II errors are only approximated by simulations -because the probability dis-
tribution under the null or alternative hypothesis is usually unknown, as often happens in the 
spatiotemporal context.
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In privacy preserving, for example using a differential privacy framework, when a statistical op-
eration is done on a database, then it is done so that its results are not overly dependent on any 
data record in the database. In this sense, one may think that this is all about avoiding, for ex-
ample outliers, when the desired statistical results are generated. But on the other hand, utility 
of such a result is questionable. When an average of a certain measure is requested, giving the 
median or an average calculated from implementation of a suitable resampling procedure may 
preserve the privacy of individual data. Such methods may be simple to implement and may have 
an appreciable utility. Recently in Santos-Lozada et al. (2020) using US census data, the authors 
show that implementation of the differential privacy will produce dramatic changes in popula-
tion counts for racial/ethnic minorities in small areas and less urban settings, significantly alter-
ing knowledge about health disparities in mortality. It is also important to note that, according to 
the Fundamental Law of Information Recovery; ‘overly accurate answers to too many questions 
(on statistics) will destroy privacy (of individual data) in a spectacular way’.

The paper tries to use frequentist statistical hypothesis testing framework for defining their 
differential privacy framework. However, as many of us are aware the hypothesis testing is un-
dergoing immense criticism, especially within the applied statistical community, for example so-
called p-value problems. It may be that such problems and oppositions may appear in any privacy 
framework that is based on the frequentist statistical hypothesis testing methodology. Therefore, 
ideally the authors should touch upon such problems, especially to attract applied researchers 
(in the sense of the discipline of statistics) such as computer scientists, social scientists, etc., to 
their approach. In fact, the authors emphasize the importance of the use of the Neyman–Pearson 
hypothesis testing framework for interpreting differential privacy over other methods. According 
to original thesis of R. A. Fisher (1890–1962), the meaning of, for example, p-value < 0.05 is that 
the respective experiment should be repeated a few times. Such a practice should be handled 
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by authors' composition results. Apart from above issues, it seems that some mathematical ex-
pressions should accompany with some verbal expressions too, for example the inequality in the 
Definition 1 is valid for a given (fixed) (S, S') pair. Therefore, it is helpful to write ℙ{M(S) ∈ E | S} 
rather than writing ℙ{M(S) ∈ E} and indicate how strong the conditional (in)dependence of M(S) 
on S' given S. Any other confusions should be eliminated.
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We warmly thank Editor Paul Smith for selecting our paper for discussion and are extremely 
grateful to all the discussants for taking their valuable time to provide engaging and stimulating 
feedback on our work. These insights situate our work in context and provide promising direc-
tions for future research. We are excited to see that thoughts about theoretical complements and 
new applications are already emerging.

A general view, shared by all discussants, is that privacy is a first-order concern in many data 
science problems. We are very pleased to learn that our statistics community welcomes new 
foundational development and methodological contributions that allow for privacy protections 
in statistical data analysis.
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In this rejoinder, we aim to address two broad issues that cover most comments made in 
the discussion. First, we discuss some theoretical aspects of our work and comment on how 
this work might impact the theoretical foundation of privacy-preserving data analysis. Taking a 
practical viewpoint, we next discuss how f-differential privacy (f-DP) and Gaussian differential 
privacy (GDP) can make a difference in a range of applications.

1  |   THEORETICAL ASPECTS OF f - DP

As echoed by many discussants, the formalization of f-DP in our paper (Dong et al., 2021a) starts 
from a decision-theoretic interpretation of a ‘differential’ privacy attack, which originates from 
the work of Wasserman and Zhou (2010). The binary nature of the decision-theoretic problems 
renders the classical theory of hypothesis testing a basic tool. Specifically, we use the trade-off 
between type I and type II errors of the hypothesis testing problem as our privacy measure. In 
response to a question raised by Dr. Jorge Mateu, we remark that this trade-off is concerned with 
a thought experiment in which someone is trying to determine if an individual's data is in the 
data set or not, rather than a hypothesis test that is actually conducted. It can therefore always be 
reasoned about analytically/formally, without needing simulation, even if the algorithms them-
selves are complex or simulation based.

This treatment of privacy cost in f-DP comes with several technical properties that can facilitate 
the development of better differentially private algorithms. As highlighted by Dr. Borja Balle, f-DP 
gives tight and analytically tractable formulas for composition. This appealing feature arises from 
applying the central limit theorem to the privacy loss random variables, thereby making GDP a 
canonical single-parameter family of privacy definitions within the f-DP class. While we did not 
attempt to push hard on weakening assumptions for the privacy central limit theorems, there are 
several possible extensions. For example, one may be able to identify a necessary and sufficient 
condition for the privacy central limit theorem to hold, just like the Lindeberg–Feller condition 
for the usual central limit theorems. Another possibility is to sharpen the central limit theorem by 
leveraging a refined analysis of the privacy loss random variables (Zheng et al., 2020). More spe-
cifically, Dr. Sebastian Dietz suggested a very interesting direction for improving the composition 
formulas by making use of a third-moment-free central limit theorem (see, for example, DasGupta 
(2008)). A successful investigation in this direction might extend the applicability of the compo-
sition formulas to (ε, δ)-DP and others. More broadly, it would also be interesting to explore cen-
tral limit theorem phenomena of privacy beyond composition. For example, Dong et al. (2021b) 
recently showed that a related central limit theorem occurs in high-dimensional query answering 
and yet privacy cost is best described in the framework of f-DP. We see all these as interesting fu-
ture directions for broadening the scope of the hypothesis testing viewpoint on differential privacy.

In addition to composition, subsampling is another important primitive that is involved in 
many algorithm designs. As pointed out by Dr. Borja Balle, while divergence-based privacy defi-
nitions face technical difficulties in describing privacy amplification by subsampling, f-DP gives 
a relatively concise and coherent expression for understanding how privacy is amplified using 
this primitive. This also gives a sharper privacy analysis of subsampling than can be obtained by 
directly using (ε, δ)-DP. An interesting observation made by Dr. Borja Balle is that the significant 
gap between the two frameworks seems surprising, and warrants further investigation. It is also 
worth developing similar privacy analyses for the various flavors of subsampling schemes used 
in training deep learning models (not all of which involve independent sampling across rounds).
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2  |   APPLICATIONS OF f - DP

Our main hope for f-DP is to see as many applications as possible to improving the privacy analy-
ses of the diverse algorithms used in a variety of data science problems. Encouragingly, we found 
many such possibilities in the discussants’ contributions that either tackle important problems 
or show great promise.

Understanding the trade-off between privacy and utility for various statistical and computa-
tional tasks is the central object of study in the differentially privacy literature. The main point 
of f-DP and GDP is to make it possible to capture this fundamental trade-off more precisely. As 
a result, the f-DP framework allows us to obtain better trade-offs between privacy guarantees 
and data usability. This trade-off is different in different applications, and requires analyses on a 
case by case basis. We emphasize, as pointed out by several of the discussants that privacy pro-
tection does inevitably come with utility loss. Indeed, this is a consequence of the ‘fundamental 
law of information recovery’, which applies not just to differential privacy but to any method of 
releasing data. So while it is true that differential privacy can harm utility (especially for small 
data sets), this is not an artefact of differential privacy, but an actual, fundamental trade-off that 
we have to grapple with as a society. We can choose to get exact statistics about our data, but 
we should understand that this means giving up on privacy. Differential privacy takes no stand 
on how we should mediate this fundamental trade-off: rather it provides a precise language in 
which to talk about it.

2.1  |  f-DP for stochastic optimization

To appreciate how sharply this trade-off can be characterized using a given privacy definition, 
perhaps the best benchmark is stochastic gradient descent (SGD), the basic foundation for many 
machine learning algorithms. Owing to its effectiveness in handling composition and subsam-
pling, f-DP gives a tighter privacy analysis of SGD than the moments accountant technique 
(Abadi et al., 2016), which further feeds back into improved test accuracy of trained deep learn-
ing models at fixed privacy guarantees (Bu et al., 2020). We are delighted that Dr. Borja Balle 
wrote ‘I would encourage practitioners to take note of this and start using Gaussian DP account-
ing in their DP-SGD implementations’.

Moving forward, Dr. Marco Avella-Medina raised several interesting and important questions re-
garding private SGD with f-DP guarantees. Although gradient clipping is a necessary step in private 
SGD that ensures bounded sensitivity to any single data point, this step can lead to inconsistency for 
some problems. To go around this difficulty, Avella-Medina suggested using a consistent bounded 
influence M-estimator from robust statistics, which we believe is a promising approach worthy of 
future research effort. Moreover, we are glad to see that Avella-Medina et al. (2021) introduced a 
kind of noisy gradient descent and analysed its Gaussian differential privacy properties. This opens 
an exciting research avenue to understand when noisy gradient descent outperforms SGD.

2.2  |  Other applications

Differential privacy has applications beyond machine learning. A promising application area—due 
to strict privacy regulation—is in the analysis and sharing of medical data. A challenge in medical 
applications is that the size of the relevant data sets is often relatively small. The improved trade-off 
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between privacy and utility is especially important in the challenging small data regime. As noted 
by Drs. Peter Krusche and Frank Bretz, there are obstacles to combining data across hospitals—for 
which we think differential privacy might be able to help. Noisy access to a large data set might be 
better—even from the perspective of utility—than exact access to only a small local data set. When 
applying privacy protections to small data, it is especially important not be as tight as possible in 
accounting for privacy loss, which is one of the main benefits of the f-DP framework.

Dr. Jorge Mateu brought up privacy issues that arise when analysing trajectory data. In 
principle, f-DP and GDP can be applied to any kind of data, such as trajectory data. It would 
make sense, for example to think about the question of releasing statistics about trajectory 
data or a synthetic data set consisting of trajectories that maintain consistency with the real 
data with respect to various statistics of interest, so long as those statistics have low sensitivity 
and vary only mildly with the data of individuals. These types of problems deserve further 
study. Of course, providing useful analyses of a single individual's trajectory is by design pre-
vented by technologies that aim to preserve individual privacy. A related question, asked by 
Dr. Christine Chai, was whether the f-DP framework can be applied to COVID-19 contact 
tracing data. Differential privacy ((ε, δ)-DP, f-DP, or any related variant) is not directly applica-
ble to what is most commonly known as contact tracing—letting contacts know that someone 
with COVID-19 has been near them—since by design, this is highly sensitive to a single data 
point. However, GDP (as well as other differential privacy variants) can be used to improve 
population level statistics related to contact tracing, such as how crowded grocery stores are 
by time and mobility data, or even what fraction of visitors to a grocery store in a given day 
have had potential COVID-19 exposure. More generally, we believe that f-DP has many more 
connections to various aspects of data science.

Finally, we remark that there are many heuristic approaches to privacy that do not come with 
the guarantees of differential privacy. There is a vast literature of pros and cons among these ap-
proaches, which is beyond the scope of this paper—but in general, ‘syntactic’ approaches do not 
stand up to attack by a determined adversary. In particular, synthetic data is known to be neither 
necessary nor sufficient for privacy—but also not incompatible with differential privacy. For exam-
ple, there is a large literature on generating differentially private synthetic data (see, e.g., Blum et al. 
(2013); Gaboardi et al. (2014); Vietri et al. (2020); Aydore et al. (2021); Jordon et al. (2018); Beaulieu-
Jones et al. (2019)), most of which we believe can be improved by f-DP style analyses.
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