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Big Brother is watching you! 1984, ceorge orwell
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Does anonymization preserve privacy?

The Netflix competition
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Does anonymization preserve privacy?

The Netflix competition
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e In 2006, Narayanan and Shmatikov demonstrated that

Netflix ratings + IMDb = De-anonymization!
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Does anonymization preserve privacy?

The Netflix competition
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e In 2006, Narayanan and Shmatikov demonstrated that
Netflix ratings + IMDb = De-anonymization!

e The second Netflix competition was canceled
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Releasing summary statistics?

Genomic research often releases minor allele frequencies (MAFs), i.e., sample
mean

In 2008, Homer et al shocked the genetics community by showing that MAFs
are not private

OPEN & ACCESS Freely avallable online PLOS

Resolving Individuals Contributing Trace Amounts of
DNA to Highly Complex Mixtures Using High-Density
SNP Genotyping Microarrays

Nils Homer'?, Szabolcs Szelinger’, Margot Redman’, David Duggan’, Waibhav Tembe', Jill Muehling’,
John V. Pearson’, Dietrich A. Stephan’, Stanley F. Nelson? David W. Craig™

1Trnshational Genomics fesearch Institute (TGen), Phoenix, Arizona, United States of America, 2University of California Los Angeles, Los Angeles, California, United
States of Amerkca
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Is this our future?

RIP

PRIVACY

{




Can we give up privacy? (ws) 13

Peggy Noonan: A loss of privacy is a loss ~ Nat Hentoff: Privacy is an American
of something personal and intimate constitutional liberty right
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From hypothesis testing to privacy

In 2006, Dwork, McSherry, Nissim, and Smith introduced differential privacy
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From hypothesis testing to privacy

In 2006, Dwork, McSherry, Nissim, and Smith introduced differential privacy

Testing
Statistic,
Hypotheses

-

In 2010, Wasserman and Zhou related it to hypothesis testing J

e Hypothesis testing serves as a convenient tool
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From hypothesis testing to privacy

In 2006, Dwork, McSherry, Nissim, and Smith introduced differential privacy

Hypotheses
-

EL Lehmann
Joseph P. Romano

In 2010, Wasserman and Zhou related it to hypothesis testing J

e Hypothesis testing serves as a convenient tool
e However, is it the optimal language for reasoning about differential privacy?
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The intuition behind differential privacy

Algorithm M
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The intuition behind differential privacy

)
'\ - “" Algorithm M
N - -+ >
" ‘I
Algorithm M ‘ DIFFERENCE..,
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Setup for differential privacy

An example of a dataset S

Weijie@Wharton

Cender Age  Salary
Alice F 25  $75,000
Bob M 20  $45,000
Charlie M 30 $50,000
Dave M 35 $80,000
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Setup for differential privacy

An example of a dataset S

Cender Age  Salary

Alice F 25 $75,000
Bob M 20 $45,000
Charlie M 30 $50,000
Dave M 35 $80,000

An example of a mechanism/algorithm

M (S) = Average Salary + noise J
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Interpreting differential privacy via hypothesis testing

Two neighboring datasets

S = {Alice, Bob, Charlie,Dave} and S’ = {Anne,Bob, Charlie, Dave}

Based on output of algorithm M, perform hypothesis testing J

Hy : true datasetis S vs  Hj: true datasetis S’
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Interpreting differential privacy via hypothesis testing

Two neighboring datasets

S = {Alice, Bob, Charlie,Dave} and S’ = {Anne,Bob, Charlie, Dave}

Based on output of algorithm M, perform hypothesis testing J

Hy : Alice inthe dataset vs  H; : Anne in the dataset

e Intuitively, preserves privacy of Alice and Anne if hypothesis testing is
difficult
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Interpreting differential privacy via hypothesis testing

Two neighboring datasets

S = {Alice, Bob, Charlie,Dave} and S’ = {Anne,Bob, Charlie, Dave}

Based on output of algorithm M, perform hypothesis testing J

Hy : Alice inthe dataset vs  H; : Anne in the dataset

e Intuitively, preserves privacy of Alice and Anne if hypothesis testing is
difficult

e Essence in differential privacy (DP)
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The impact of differential privacy

Apple will not
see your data

Google (Chrome), Apple (i0S 10+),
Microsoft, U.S. Census Bureau [Dwork,
Roth 14; Erlingsson et al '14; Apple DP team

17; Ding et al 17; Abowd '16]

Weijie@Wharton

Test of time: 2017 Godel prize

9/53



The impact of differential privacy

Apple will not
see your data

9

Google (Chrome), Apple (i0S 10+),
Microsoft, U.S. Census Bureau [Dwork, Test of time: 2017 Godel prize
Roth '14; Erlingsson et al '14; Apple DP team Turing Award?
17; Ding et al 17; Abowd '16]
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What's new in this talk?



A new privacy notion and the old one

f-differential privacy: this talk (¢, 6)-differential privacy: Dwork et al.
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A new privacy notion and the old one

f-differential privacy: this talk (e, §)-differential privacy: Dwork et al.

® |Interpreting privacy via hypothesis ® |Interpreting privacy via hypothesis
testing testing

e Privacy measure: type | and Il errors ® Privacy measure: worst-case
trade-off likelihood ratio

e Privacy functional parameter: ® Privacy parameters:
£:00,1] = [0,1] €>00<6<1

e How to achieve: adding Gaussian e How to achieve: adding Laplace
noise noise
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Outline

1. Introduction to f-DP
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Paper

Gaussian Differential Privacy

Journal of the Royal Statistical Society: Series B (with discussion), 2022

e Jinshuo Dong (Penn/Northwestern/Tsinghua)
e Aaron Roth (Penn)
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Trade-off functions
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Trade-off functions

For rejection rule ¢ € [0, 1], denote by

type l error g = Ep[¢)]
type Il error  f4 =1—Eg[¢)
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Trade-off functions

Hy: P Vs Hy:Q J

For rejection rule ¢ € [0, 1], denote by

type l error g = Ep[¢)]
type Il error  f4 =1—Eg[¢)

For two probability distributions P and @), define the trade-off function
T(P,Q):[0,1] — [0,1] as

T(P,Q)(a) = igf {By 1 ap <}
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Trade-off functions

Hy: P Vs Hy:Q J

For rejection rule ¢ € [0, 1], denote by

type l error g = Ep[¢)]
type Il error  f4 =1—Eg[¢)

For two probability distributions P and @), define the trade-off function
T(P,Q):[0,1] — [0,1] as

T(P,Q)(a) = igf {By 1 ap <}

e Neyman-Pearson lemma

e fistrade-offifand only if f is convex, continuous, non-increasing, and
fla) <1—aforae|0,1]
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Definition of f-DP

Definition (DRS)
A (randomized) algorithm M is said to be f-differentially private if

T(M(S),M(S") > f

for all neighboring datasets S and S’

e Randomness of M(S), M (S’) is from the algorithm M
e Telling apart Alice and Anne is no easier than P and Q if f = T(P, Q)

e Related to hypothesis testing region [Kairouz et al '17]
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(€,9)-DP is a special instance of f-DP
Definition of (¢,4)-DP

e “P(M(S)EE)—e §<P(M(S)eE)<e P(M(S')EE)+§
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(€,0)-DP is a special instance of f-DP

Definition of (¢, 0)-DP
e “P(M(S)EE)—e §<P(M(S)eE)<e P(M(S')EE)+§

Adapted from [Wasserman, Zhou "10]
An algorithm M is (e, §)-DP if and only if it is f. s-DP

10
cintercept = &
A - f e,0
0.8
P
.
§ 0.6 O’:r@
g ",
= “%y,
o N3
204 slope = —e° %
~ \\
0.2
0.0 . . . .
0.0 0.2 04 0.6 0.8 1.0
type I error 15/53
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(€,0)-DP is a special instance of f-DP

Definition of (¢, 0)-DP
e “P(M(S)EE)—e §<P(M(S)eE)<e P(M(S')EE)+§

Adapted from [Wasserman, Zhou "10]
An algorithm M is (e, §)-DP if and only if it is f. s-DP

1 {intercept = §
) — fes
0.84
) Issues with (e, 0)-DP
Zoo o, .
5 ”%@ e 4 segments. Abit ad
= ,
ém« slope = —e \‘:?/@ hoc?
. ® w.p. 0, very bad events
021 can happen
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
type I error 15/53
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A primal-dual perspective on the relationship between
f-DP and (¢, 9)-DP



From dual to primal
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type I error
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From dual to primal
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type I error
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From dual to primal

10110 T odA}

16/53

type I error
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From dual to primal

I0110 T odAy
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type I error
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From dual to primal

1.0

0.8
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From primal to dual

1.0

0.8

0.6 1

type Il error

0.2

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

type | error
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From primal to dual
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From primal to dual

Jouua || 2dAy

17/53

type | error
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Is f too general? Let’s focus!



Gaussian differential privacy (CDP)

Consider Gaussian trade-off function
G, :=T(N(0,1),N(u,1))

for > 0. Explicitly, G, () = (@711 — a) — p)

Definition (DRS)
An algorithm M is said to be p-GDP if

T(M(S),M(S") > G,

for all neighboring datasets S and S’

Weijie@Wharton 18/53



Gaussian differential privacy (CDP)

Consider Gaussian trade-off function
G, :=T(N(0,1),N(u,1))

for > 0. Explicitly, G, () = (@711 — a) — p)

Definition (DRS)
An algorithm M is said to be p-GDP if

T(M(S),M(S") > G,

for all neighboring datasets S and S’

e Asingle-parameter family (related to LDA)
e Focal to f-DP (a central limit theorem phenomenon)
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How to interpret p in GDP?
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e Privacy amounts to distinguishing between A/(0,1) and N/ (y, 1)
e 1 < 1: reasonably private. u > 6: blatantly non-private
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A universal template: adding noise!

User Database

—— Tell me 4(S) :>
<: H(S)+n0ise —
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A universal template: adding noise!

User Database

—— Tell me 4(S) :>
<: H(S)+n0ise —

Sensitivity Af := maxg~.g/ [0(S) — 6(S")]

Privacy guarantee

Consider the Gaussian mechanism M (S) = 6(S) + N (0,02). Then, M is u-CDP
with p = Af/o
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A universal template: adding noise!

User Database

—— Tell me 4(S) :>
<: H(S)+n0ise —

Sensitivity Af := maxg~.g/ [0(S) — 6(S")]

Privacy guarantee

Consider the Gaussian mechanism M (S) = 6(S) + N (0,02). Then, M is u-CDP
with p = Af/o

e Gaussian mechanism is to GDP as Laplace mechanism is to (e, 0)-DP
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Outline

2. Informative representation of privacy
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Paper

A Statistical Viewpoint on Differential Privacy: Hypothesis Testing,
Representation and Blackwell’s Theorem

Annual Review of Statistics and Its Application, 2025
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Post-processing

A post-processing operation is a (randomized) algorithm that takes as input
M (S) and yields a new algorithm that we denote by Proc o M

e aka garbling
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Post-processing

A post-processing operation is a (randomized) algorithm that takes as input
M (S) and yields a new algorithm that we denote by Proc o M

e aka garbling

If an algorithm M is private, then its post-processing Proc o M must also be
private
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Post-processing

A post-processing operation is a (randomized) algorithm that takes as input
M (S) and yields a new algorithm that we denote by Proc o M

e aka garbling

Axiom

If an algorithm M is private, then its post-processing Proc o M must also be
private

f-DP satisfies the axiom

f-DP satisfies the post-processing property because, for any P and Q,

T (Proc(P),Proc(Q)) = T(P,Q)
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A representation theorem

Under the axiom, any DP definition must have its metric defined through the
trade-off function:

D(P,Q) = d(T(P,Q))
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A representation theorem

Under the axiom, any DP definition must have its metric defined through the
trade-off function:

D(P,Q) = d(T(P,Q))

e Thus, f-DP is the most informative
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A representation theorem

Under the axiom, any DP definition must have its metric defined through the
trade-off function:

D(P,Q) = d(T(P,Q))

e Thus, f-DP is the most informative

e Fore-DP: D(P,Q) := supg log %

® For (¢,0)-DP: D(P, Q) = maxp. p()>s log PC(J?E_é
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A representation theorem

Under the axiom, any DP definition must have its metric defined through the
trade-off function:

D(P,Q) = d(T(P,Q))

Thus, f-DP is the most informative

For e-DP: D(P, Q) := supg log %

For (¢,0)-DP: D(P, Q) = maxp.p(p)>s10g PC(J?E_ﬁ

e How to prove it?
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Blackwell’s informativeness theorem

'Greatest Of All Theorems in Slides



Blackwell’s informativeness theorem

Lemma (Blackwell '51, GOATS")

Informativeness and post-processing are equivalent:
(@) T(P',Q") > T(P,Q) (informativeness)

(b) (P, Q") is Blackwell harder to distinguish than (P, Q)
(post-processing/garbling). (That is, P’ = Proc(P), Q' = Proc(Q))
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Blackwell’s informativeness theorem

Lemma (Blackwell ‘51, GOATS')
Informativeness and post-processing are equivalent:
(@) T(P',Q") > T(P,Q) (informativeness)

(b) (P, Q") is Blackwell harder to distinguish than (P, Q)
(post-processing/garbling). (That is, P’ = Proc(P), Q' = Proc(Q))

COMPARISON OF EXPERIMENTS

DAVID BLACKWELL
HOWARD UNIVERSITY

1. Summary
Bohnenblust, Shapley, and Sherman [2] have introduced a method of compar-
ing two sampling procedures or experiments; essentially their concept is that one
iment a is more i ive than a second experiment 8, 3 B, if, for every
possible risk function, any risk attainable with 8 is also attainable with a. If a is
a sufficient statistic for a procedure equivalent to 8, a > §, it is shown that
a3 B. In the case of dichotomies, the converse is proved. Whether > and  are
equivalent in general is not known. Various properties of > and  are obtained,
such as the following: if « > 8 and v is independent of both, then the combina-
tion (a, 7) > (8, 7). An application to a problem in 2 X 2 tables is discussed.

e Blackwell used terms:
experiment & transformation

'Greatest Of All Theorems in Slides



Blackwell’s informativeness theorem

Lemma (Blackwell ‘51, GOATS')
Informativeness and post-processing are equivalent:
(@) T(P',Q") > T(P,Q) (informativeness)

(b) (P, Q") is Blackwell harder to distinguish than (P, Q)
(post-processing/garbling). (That is, P’ = Proc(P), Q' = Proc(Q))

COMPARISON OF EXPERIMENTS

DAVID BLACKWELL
HOWARD UNIVERSITY

1. Summary
Bohnenblust, Shapley, and Sherman [2] have introduced a method of compar-
ing two sampling procedures or experiments; essentially their concept is that one
iment a is more i ive than a second experiment 8, « B, if, for every
possible risk function, any risk attainable with § is also attainable with a. If a is
a sufficient statistic for a procedure equivalent to 8, a > f, it is shown that |
@5 B. In the case of dichotomies, the converse is proved. Whether > and > are
equivalent in general is not known. Various properties of > and > are obtained,
such as the following: if « > § and v is independent of both, then the combina-
tion (a, 7) > (8, 7). An application to a problem in 2 X 2 tables is discussed.

e Blackwell used terms:
experiment & transformation
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Rényi divergence is not as informative

Rényi divergence of order v

Ry (PIQ) = —

e Concentrated DP [Dwork, Rothblum '16], zero concentrated DP [Bun, Steinke
16], truncated concentrated DP [Bun, Dwork, Rothblum, Steinke 18], and Rényi
DP [Mironov '17] are all defined via Rényi divergence
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Rényi divergence is not as informative

Rényi divergence of order

1 dP
Ry(PQ) = — lozBo(55)”

e Concentrated DP [Dwork, Rothblum "16], zero concentrated DP [Bun, Steinke
6], truncated concentrated DP [Bun, Dwork, Rothblum, Steinke 18], and Rényi
DP [Mironov 17] are all defined via Rényi divergence

Proposition (DRS)

Let P. = Bern(1$— +e€) Qe = Bern(7= +ee) For 0 < € < 4, the following are true:

(@) Forally > 1, Ry(P|Qc) < Ry(N(0,1)|N (e, 1))
(b) Using total variation, drv (Pe, Qc) > drv (N(0,1), N (e, 1))
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Rényi divergence is not as informative

Rényi divergence of order

1 dP
Ry(PQ) = — lozBo(55)”

e Concentrated DP [Dwork, Rothblum "16], zero concentrated DP [Bun, Steinke
6], truncated concentrated DP [Bun, Dwork, Rothblum, Steinke 18], and Rényi
DP [Mironov 17] are all defined via Rényi divergence

Proposition (DRS)

Let P. = Bern(1$— +e€) Qe = Bern(7= +ee) For 0 < € < 4, the following are true:

(@) Forally > 1, Ry(P|Qc) < Ry(N(0,1)|N (e, 1))
(b) Using total variation, drv (Pe, Qc) > drv (N(0,1), N (e, 1))

e No such a phenomenon for trade-off functions

e Similar examples exist for (e, §)-DP
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Properties f-DP

e Informative representation of privacy \/
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Outline

3. Composition and central limit theorems
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What is composition?
[ ex_Biooa | _Hy .
B

E
<= 2 =< 2 2 =<
“EFFF

® > O 0 >

Weijie@Wharton 28/53



What is composition?
[ ex_Biooa | _Hy .
B

E
<= 2 =< 2 2 =<
lflelwn

® > O 0 >

How many patients
have diabetes?

How many patients
have diabetes?
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What is composition?
[ sex [Biooa | L v | .

B

E
<= 2 =< 2 2 =<
umlual@[wn

® > O 0 >

Composition surely leads to a
privacy compromise. But how fast?

Weijie@Wharton

How many patients
have diabetes?

How many patients
have diabetes?




Definition of composition

Let M7 : X — Y7 and Ms : X x Y7 — Ys be private algorithms. Define their
composition M : X — Y; x Y5 as

M(S) = (My(S), Ma(S, Mi(5))) )

Given a sequence of algorithms M; : X x Y7 x --- xY;_1 = Y, fori <k,
recursively define the composition:

M:X—=Y x---xY

Weijie@Wharton 29/53



Tensor product of trade-off functions

The tensor product of two trade-off functions f = T'(P,Q) and g = T(P',Q’) is
defined as

feg=T{PxP,QxQ)

e Well-defined
e The operator ® is commutative and associative

® ForGDP. G, @G, ® - @Gy, = Gy where p= \/pf + - + pi

Weijie@Wharton 30/53



Composition is an algebra

Proposition

Suppose M; (-, y1,- -+ ,yi—1) is fi-DP forall y, € Y1,...,y;—1 € Yi_1. Then the
composition algorithm M : X — Y1 X --- x Y is

1®--® fi-DP

Weijie@Wharton 31/53



Composition is an algebra

Proposition

Suppose M;(+,y1,- -+ ,yi—1)is fi~DP forall y; € Y1,...,y;—1 € Y;_1. Then the
composition algorithm M : X — Y1 X --- x Y is

1®--® fi-DP

e Cannot be improved in general
e Composition in f-DP is reduced to algebra

e k-step composition of ;i-GDP algorithms is v/ku-GDP

Weijie@Wharton 31/53



Central limit theorem for f-DP

Theorem (DRS)

Let {fri: 1 <i< k,k=1,2,...} be atriangular array of trade-off functions,
each being O(1/v/k) close to perfect privacy. Then

Im fr1® fra® - ® fror =G
k—o0

e The convergence is uniform on [0, 1]

e 1 can be computed from { fr;}
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Central limit theorem for f-DP

Theorem (DRS)

Let {fri: 1 <i< k,k=1,2,...} be atriangular array of trade-off functions,
each being O(1/v/k) close to perfect privacy. Then

Im fr1® fra® - ® fror =G
k—o0

e The convergence is uniform on [0, 1]

e 1 can be computed from { fr;}

e If My, is fi;-DP, their composition is approximately u-GDP

Weijie@Wharton 32/53



Central limit theorem for f-DP

Theorem (DRS)

Let {fri: 1 <i< k,k=1,2,...} be atriangular array of trade-off functions,
each being O(1/v/k) close to perfect privacy. Then

Im fr1® fra® - ® fror =G
k—o0

e The convergence is uniform on [0, 1]

e 1 can be computed from { fr;}

If My is fr;-DP, their composition is approximately ;-GDP

An effective approximation tool
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Central limit theorem for f-DP

Theorem (DRS)

Let {fri: 1 <i< k,k=1,2,...} be atriangular array of trade-off functions,
each being O(1/v/k) close to perfect privacy. Then

Im fr1® fra® - ® fror =G
k—o0

e The convergence is uniform on [0, 1]

e 1 can be computed from { fi.;}

o |If My, is fri-DP, their composition is approximately ;--GDP
e An effective approximation tool
e CDPisto f-DP as Gaussian variables (rvs) to general rvs
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Central limit theorem for e-DP

Theorem (DRS)
Fix ;> 0 and assume € = \/u/k. Then

Gu<a+%>—%<f§?é“(a)<Gu<a—f)+f
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Central limit theorem for e-DP

Theorem (DRS)
Fix ;> 0 and assume € = \/u/k. Then

Gu<a+%)—%ng‘?é“(a)<GM<a—£)+f

e Local computation is #P-complete [Murtagh, Vadhan 16]

Weijie@Wharton 33/53



Central limit theorem for e-DP

Theorem (DRS)
Fix ;> 0 and assume € = \/u/k. Then

Gu(a+7) -2 <@ <Gula-F)+5

e Local computation is #P-complete [Murtagh, Vadhan 16]

e Sharper than the O(1/v/k) bound in Berry-Esseen
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Central limit theorem for e-DP

Theorem (DRS)

Fix ;> 0 and assume € = \/u/k. Then

Gu(a+7) -2 <@ <Gula-F)+5
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Central limit theorem for e-DP

Theorem (DRS)
Fix ;> 0 and assume € = \/u/k. Then

Gu<a+%)—%gf?ok(a)gGM<a—%)+%

e Local computation is #P-complete [Murtagh, Vadhan "16]

e Sharper than the O(1/v/k) bound in Berry-Esseen

Privacy CLT Beats Berry-Esseen for e-DP! Why? J

e Due to randomization of rejection rules, leading to continuity of trade-off
functions
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A numerical example

Weijie@Wharton

type II error

1.0

0.8 1

—— Exact Composition
—— GDP by our CLT
---- Optimal (¢,d)-DP

type I error

10-fold composition of (1/4/10,0)-DP. § = 0.001 in green curve
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Properties of f-DP

e Informative representation of privacy \/

e Algebraically convenient and tight composition operations \/
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Outline

4. Amplifying privacy via subsampling
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What is subsampling for privacy?

Given dataset S, apply the algorithm M on a subsampled dataset sub(.S),
resulting a new algorithm M o sub(S) J

e Subsampling provides stronger privacy guarantees than when run on the
whole dataset

e Afrequently used tool for amplifying privacy
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Subsampling theorem for f-DP

sub,, uniformly picks an m-sized subset from S. Let p := m/n

p-sampling operator C,, acting on trade-off functions

Cp(f) = Conv(min{fpafp_l}) = min{fpa fp_l}**

e fpo=pf+(1—pId withld(a)=1-«

e min{f,, f, '}** is double (convex) conjugate of min{ f,, f, '} (the greatest
convex lower bound)
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Subsampling theorem for f-DP

sub,, uniformly picks an m-sized subset from S. Let p := m/n

p-sampling operator C,, acting on trade-off functions

Cp(f) = Conv(min{fpafp_l}) = min{fpa fp_l}**

e f,=pf+(1—-pld withld(a)=1—-«
e min{f,, f, '}** is double (convex) conjugate of min{ f,, f, '} (the greatest
convex lower bound)

If M is f-DP, then M o sub,, is C,,(f)-DP, and it is tight J

e The subsampling theorem for Rényi DP is complex [Wang, Balle,
Kasiviswanathan '18]
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Numerical examples

1.0 1<
f \\\ — fa,fs
fP 0.8 \\ — fE',(;’
.fp_l — Cp(fs,&)
AN
0.4 1
0.2 1
0 T T 0.0 T T T T
0 o Fola®) 1 00 02 04 06 08 10
38/53

Weijie@Wharton



Properties of f-DP

e Informative representation of privacy \/
e Algebraically convenient and tight composition operations \/

e Sharp privacy amplification via subsampling \/
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Outline

5. Application to deep learning
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Paper

Deep Learning with Gaussian Differential Privacy

Harvard Data Science Review, 2020
e Zhigi Bu (Penn/Amazon)

¢ Jinshuo Dong (Penn/Northwestern/Tsinghua)
e QiLong (Penn)

Weijie@Wharton
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Privacy concerns in deep learning
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Privacy concerns in deep learning

e Private deep learning by Google Brain [Abadi et al '16]
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Private deep learning (abadi et al 6]

Input: Dataset S = {z1,...,2z,}, loss function ¢(6, z).
Parameters: initial weights 6, learning rate 7,
subsampling probability p, number of
iterations 7', noise scale o, gradient norm bound R.
fort=0,...,7—1do
Take a Poisson subsample I; C {1,...,n} with subsampling probability p
for i € I; do
ol Vb0, ;)
ﬁt(i) — v,gi)/ max {1, ||v,£i) ll2/R} > Clip gradient
Opr1 O — 1y - ﬁ ( Zieh ﬂt(z) +oR-N(0, I)) > Gaussian mechanism

Output 0

e Moments accountant for (e, §)-DP [Abadi et al '16]
e Extends to noisy Adam
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Can the f-DP framework
improve privacy analysis?



Privacy analysis of deep learning

SGD equation
0t+1 = SGD o sub(S; Ht)

Observation
Deep Learning = Subsampling + Composition
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Privacy analysis of deep learning

SGD equation
9t+1 = SGD o sub(S; 9:‘,)

Observation
Deep Learning = Subsampling + Composition

Thus, we get

Theorem (BDLS)
Private deep learning M (S) = (01,62, . .., 0r) is asymptotically u-GDP with

p= "2y~ 1)

e m is the mini-batch size, and n is the total number of examples
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f-DP gives tighter analysis on MNIST

95.0% accuracy, c=1.3

\ —— 0.23-GDP by CLT
\ ——- (1.19,1e-5)-DP by MA
0.8
\
— \
S \
@007
= \
\
8 o041 \
> \
= \
\'\
0.21 ~~a_
0.0 . . . ==
00 02 04 06 08 1.0
Type | error

96.6% accuracy, c=1.1

o o o
> o ©
! 1 A

Type Il error

o
N
.

o
<)

—— 0.57-GDP by CLT
(3.01,1e-5)-DP by MA

Type | error

Solid red: our f-DP analysis. Dashed blue: moments accountant by Google Brain

Weijie@Wharton
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f-DP gives tighter analysis on MNIST

97.0% accuracy, c=0.7

1.0
—— 1.13-GDP by CLT
—=- (7.1,1e-5)-DP by MA
0.8 y
—
o
= 061
(0]
0 0.4
>
'_
0.2
0.0 . . . -
00 02 04 06 08 1.0

Type | error

e Our f-DP interpretation is (0, 1) vs N'(1.13,1); while MA gives
(7.1,1075)-DP, noting e™! = 1212.0
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A Pareto improvement of privacy vs accuracy trade-off

98%

97%

96%

95%

94%

93%

Prediction accuracy
N
o\o

91%

90%

Weijie@Wharton

—e— Qur framework

—-=-Google Brain

3 35
Privacy budget

Fix = 1077 but vary ¢
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Outline

6. Application to 2020 United States Census
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Paper

Revealing the Underestimated Privacy of the 2020 United States Census

Coming soon

e Buxin Su (Penn)
e Chendi Wang (Penn)
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US Census Bureau adopted DP in 2020 decennial
census

e Most queries take integer values, e.g.,

M(S) = Z l[w is 18 orolder]

reNY
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US Census Bureau adopted DP in 2020 decennial
census

e Most queries take integer values, e.g.,

M(S) = Z l[m is 18 orolder]

reNY

e Add integer-valued noise to census microdata, with pdf

1 _(e—w?
Z(p,02)

poc(x) = e 202 forallz € Z
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US Census Bureau adopted DP in 2020 decennial
census

e Most queries take integer values, e.g.,

M(S) = Z 1[1‘ is 18 orolder]

reNY

e Add integer-valued noise to census microdata, with pdf

1 _(e—w?
Z(u,0%)

e 22 | forallz € Z
e Composition of 9 queries for each geographical level

ppa(z) =

Weijie@Wharton 48/53



Bureau hasn't fully used up privacy budget!

For any ¢, f-DP yields a tighter e privacy bound for census data than the
Bureau'’s approach
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Bureau hasn't fully used up privacy budget!

For any é, f-DP yields a tighter e privacy bound for census data than the
Bureau'’s approach

12

B Burcau’s
10 9.67 B Owrs

e Resolved an open question posed by the US Census Bureau [Kifer et al '22]
Weijie@Wharton 49/53



Less noise can be added to the census for the same
privacy budget



Reduced noise with equivalent privacy bound

Comparison of variance: Bureau's approach vs. our f-DP based approach

Geographic us State County PEPG
Level
Bureau’s 69.40 5.00 16.07 10.47
Ours 54.74 4.25 13.21 8.71
Reduction 13.9% 15% 17.8% 16.8%
Geographic  Tract Subset Tract Subset Optimized Block Block
Level Croup Group
Bureau’s 10.47 5.77 10.47 451.13
Ours 8.71 4.89 8.71 338.28
Reduction 16.8% 15.3% 16.8% 25%
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Reduced noise with equivalent privacy bound

Comparison of variance: Bureau's approach vs. our f-DP based approach

Geographic us State County PEPG
Level
Bureau’s 69.40 5.00 16.07 10.47
Ours 54.74 4.25 13.21 8.71
Reduction 13.9% 15% 17.8% 16.8%
Geographic  Tract Subset Tract Subset Optimized Block Block
Level Croup Group
Bureau’s 10.47 5.77 10.47 451.13
Ours 8.71 4.89 8.71 338.28
Reduction 16.8% 15.3% 16.8% 25%

e More accurate data for downstream applications of census
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Concluding remarks



Privacy: a foundation for trustworthy data science

Weijie@Wharton 51/53



Summary

Informativeness Composition  Subsampling

e-DP
(¢,0)-DP

Divergence based DPs

f-DP
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Summary

Informativeness Composition  Subsampling

e-DP X
(¢,5)-DP X
Divergence based DPs X
7-DP v’

Gaussian differential privacy

e Trade-off functions are informative
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Summary
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Summary

Informativeness Composition  Subsampling

e-DP X X v’
(c,8)-DP X X v’
Divergence based DPs X \/ X
f-DP v’ v’ v’

Gaussian differential privacy

e Trade-off functions are informative

e Tight composition

e Sharp subsampling

e State-of-the-art applications to private deep learning and US Census
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Take-home messages

Most Informative Algebraically Nice

Available in TensorFlow Privacy

@ Cuoussian Differential Privacy

@ A Statistical Viewpoint on Differential Privacy: Hypothesis Testing, Representation
and Blackwell’'s Theorem

© Deep Learning with Gaussian Differential Privacy

O Revealing the Underestimated Privacy of the 2020 United States Census
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The Return of the King

Most Informative Algebraically Nice

Available in TensorFlow Privacy

@ Cuaussian Differential Privacy

@ A Statistical Viewpoint on Differential Privacy: Hypothesis Testing, Representation
and Blackwell’s Theorem

© Deep Learning with Gaussian Differential Privacy
@ Revealing the Underestimated Privacy of the 2020 United States Census
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The Return of the King

Most Informative Algebraically Nice

/

Available in TensorFlow Privacy

Learned from Blackwell & Gauss

Despite its origin in computer science,
© Gaussian Differential Privacy DP is fundamentally a statistical concept

@ A Statistical Viewpoint on Differential Privacy: Hypothesis Testing, Representation
and Blackwell’s Theorem

© Deep Learning with Gaussian Differential Privacy
@ Revealing the Underestimated Privacy of the 2020 United States Census
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Proof sketch

Let f; =T(P;,Q;). Test Hy:y ~ Py x -+ X Povs H :y ~ Q1 X -+ X Q




Proof sketch

Why fi® fa® - ® fr = G,?

Let fy =T(P;,Q;). Test Hy: y ~ Py X -+ X Pyvs Hy :y ~ Q1 X -+ X Qp

e Optimal test is
L—EpL
Varp(L)’

where the log-likelihood ratio
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Let fy =T(P;,Q;). Test Hy: y ~ Py X -+ X Pyvs Hy :y ~ Q1 X -+ X Qp

e Optimal test is
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where the log-likelihood ratio
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e Under Hy, T is approximately (0, 1); and under Hy, T is approximately
N(p,1)



Proof sketch

Why fi® fa® - ® fr = G,?

Let fy =T(P;,Q;). Test Hy: y ~ Py X -+ X Pyvs Hy :y ~ Q1 X -+ X Qp
e Optimal test is

L—EpL

Varp(L)’

where the log-likelihood ratio

M=

Saily) -y i)
L= loggpi(yi) = ;log o) Li(ys)

i=1

e Under Hy, T is approximately (0, 1); and under Hy, T is approximately
N(p,1)

e Le Cam'’s third lemma
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