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Big Brother is watching you! [1984, George Orwell]
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Does anonymization preserve privacy?

The Netflix competition

• In 2006, Narayanan and Shmatikov demonstrated that

Netflix ratings + IMDb = De-anonymization!

• The second Netflix competition was canceled
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Releasing summary statistics?

Genomic research often releases minor allele frequencies (MAFs), i.e., sample
mean

In 2008, Homer et al shocked the genetics community by showing that MAFs
are not private
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Is this our future?



Can we give up privacy? [WSJ ’13]

Peggy Noonan: A loss of privacy is a loss
of something personal and intimate

Nat Hentoff: Privacy is an American
constitutional liberty right
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From hypothesis testing to privacy

In 2006, Dwork, McSherry, Nissim, and Smith introduced differential privacy

In 2010, Wasserman and Zhou related it to hypothesis testing

• Hypothesis testing serves as a convenient tool

• However, is it the optimal language for reasoning about differential privacy?
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The intuition behind differential privacy

+

+

Algorithm M

Algorithm M
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Setup for differential privacy

An example of a dataset S

Gender Age Salary
Alice F 25 $75,000
Bob M 20 $45,000

Charlie M 30 $50,000
Dave M 35 $80,000

. . . . . . . . . . . .

. . . . . . . . . . . .

An example of a mechanism/algorithm

M(S) = Average Salary + noise
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Interpreting differential privacy via hypothesis testing

Two neighboring datasets

S = {Alice,Bob,Charlie,Dave} and S′ = {Anne,Bob,Charlie,Dave}

Based on output of algorithm M , perform hypothesis testing

H0 : true dataset is S vs H1 : true dataset is S′

• Intuitively, preserves privacy of Alice and Anne if hypothesis testing is
difficult

• Essence in differential privacy (DP)
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The impact of differential privacy

Google (Chrome), Apple (iOS 10+),
Microsoft, U.S. Census Bureau [Dwork,
Roth ’14; Erlingsson et al ’14; Apple DP team

’17; Ding et al ’17; Abowd ’16]

Test of time: 2017 Gödel prize

Turing Award?
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What’s new in this talk?



A new privacy notion and the old one

f-differential privacy: this talk

• Interpreting privacy via hypothesis
testing

• Privacy measure: type I and II errors
trade-off

• Privacy functional parameter:
f : [0, 1] → [0, 1]

• How to achieve: adding Gaussian
noise

(ϵ, δ)-differential privacy: Dwork et al.

• Interpreting privacy via hypothesis
testing

• Privacy measure: worst-case
likelihood ratio

• Privacy parameters:
ϵ ⩾ 0, 0 ⩽ δ < 1

• How to achieve: adding Laplace
noise
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Outline

1. Introduction to f-DP

2. Informative representation of privacy

3. Composition and central limit theorems

4. Amplifying privacy via subsampling

5. Application to deep learning

6. Application to 2020 United States Census
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Paper

Gaussian Differential Privacy

Journal of the Royal Statistical Society: Series B (with discussion), 2022

• Jinshuo Dong (Penn/Northwestern/Tsinghua)

• Aaron Roth (Penn)
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Trade-off functions

H0 : true dataset is S vs H1 : true dataset is S′

H0 : P vs H1 : Q

For rejection rule ϕ ∈ [0, 1], denote by

type I error αϕ = EP [ϕ]

type II error βϕ = 1− EQ[ϕ]

Definition
For two probability distributions P and Q, define the trade-off function
T (P,Q) : [0, 1] → [0, 1] as

T (P,Q)(α) = inf
ϕ

{βϕ : αϕ ⩽ α}

• Neyman–Pearson lemma

• f is trade-off if and only if f is convex, continuous, non-increasing, and
f(α) ⩽ 1− α for α ∈ [0, 1]
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Definition of f-DP

Definition (DRS)
A (randomized) algorithm M is said to be f-differentially private if

T
(
M(S),M(S′)

)
⩾ f

for all neighboring datasets S and S′

• Randomness of M(S),M(S′) is from the algorithm M

• Telling apart Alice and Anne is no easier than P and Q if f = T (P,Q)

• Related to hypothesis testing region [Kairouz et al ’17]
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(ϵ, δ)-DP is a special instance of f-DP

Definition of (ϵ, δ)-DP

e−ϵ P(M(S′) ∈ E)− e−ϵδ ⩽ P(M(S) ∈ E) ⩽ eϵ P(M(S′) ∈ E) + δ

Adapted from [Wasserman, Zhou ’10]

An algorithm M is (ϵ, δ)-DP if and only if it is fϵ,δ-DP
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Issues with (ϵ, δ)-DP

• 4 segments. A bit ad
hoc?

• w.p. δ, very bad events
can happen



A primal-dual perspective on the relationship between
f-DP and (ϵ, δ)-DP



From dual to primal
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Is f too general? Let’s focus!



Gaussian differential privacy (GDP)

Consider Gaussian trade-off function

Gµ := T
(
N (0, 1),N (µ, 1)

)

for µ ⩾ 0. Explicitly, Gµ(α) = Φ
(
Φ−1(1− α)− µ

)

Definition (DRS)
An algorithm M is said to be µ-GDP if

T
(
M(S),M(S′)

)
⩾ Gµ

for all neighboring datasets S and S′

• A single-parameter family (related to LDA)

• Focal to f-DP (a central limit theorem phenomenon)
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How to interpret µ in GDP?
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• Privacy amounts to distinguishing between N (0, 1) and N (µ, 1)

• µ ⩽ 1: reasonably private. µ ⩾ 6: blatantly non-private
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A universal template: adding noise!

Sensitivity ∆θ := maxS∼S′ |θ(S)− θ(S′)|

Privacy guarantee

Consider the Gaussian mechanism M(S) = θ(S) +N (0, σ2). Then, M is µ-GDP
with µ = ∆θ/σ

• Gaussian mechanism is to GDP as Laplace mechanism is to (ϵ, 0)-DP
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Outline
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Paper

A Statistical Viewpoint on Differential Privacy: Hypothesis Testing,
Representation and Blackwell’s Theorem

Annual Review of Statistics and Its Application, 2025
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Post-processing

A post-processing operation is a (randomized) algorithm that takes as input
M(S) and yields a new algorithm that we denote by Proc ◦M
• aka garbling

Axiom
If an algorithm M is private, then its post-processing Proc ◦M must also be
private

f-DP satisfies the axiom
f-DP satisfies the post-processing property because, for any P and Q,

T
(
Proc(P ), Proc(Q)

)
⩾ T (P,Q)
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A representation theorem

Theorem (S)
Under the axiom, any DP definition must have its metric defined through the
trade-off function:

D(P,Q) = d(T (P,Q))

• Thus, f-DP is the most informative

• For ϵ-DP: D(P,Q) := supE log P (E)
Q(E)

• For (ϵ, δ)-DP: D(P,Q) = maxE:P (E)⩾δ log
P (E)−δ
Q(E)

• How to prove it?
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Blackwell’s informativeness theorem

Lemma (Blackwell ’51, GOATS1)
Informativeness and post-processing are equivalent:

(a) T (P ′, Q′) ⩾ T (P,Q) ( informativeness)

(b) (P ′, Q′) is Blackwell harder to distinguish than (P,Q)
(post-processing/garbling). (That is, P ′ = Proc(P ), Q′ = Proc(Q))

• Blackwell used terms:
experiment & transformation

1Greatest Of All Theorems in Slides
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Rényi divergence is not as informative

Rényi divergence of order γ

Rγ(P∥Q) :=
1

γ − 1
logEQ

(dP
dQ

)γ

• Concentrated DP [Dwork, Rothblum ’16], zero concentrated DP [Bun, Steinke
’16], truncated concentrated DP [Bun, Dwork, Rothblum, Steinke ’18], and Rényi
DP [Mironov ’17] are all defined via Rényi divergence

Proposition (DRS)

Let Pϵ = Bern( eϵ

1+eϵ ), Qϵ = Bern( 1
1+eϵ ). For 0 < ϵ < 4, the following are true:

(a) For all γ > 1, Rγ(Pϵ∥Qϵ) < Rγ

(
N (0, 1)∥N (ϵ, 1)

)

(b) Using total variation, dTV(Pϵ, Qϵ) > dTV

(
N (0, 1),N (ϵ, 1)

)

• No such a phenomenon for trade-off functions

• Similar examples exist for (ϵ, δ)-DP
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• Concentrated DP [Dwork, Rothblum ’16], zero concentrated DP [Bun, Steinke
’16], truncated concentrated DP [Bun, Dwork, Rothblum, Steinke ’18], and Rényi
DP [Mironov ’17] are all defined via Rényi divergence

Proposition (DRS)

Let Pϵ = Bern( eϵ

1+eϵ ), Qϵ = Bern( 1
1+eϵ ). For 0 < ϵ < 4, the following are true:
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Properties f-DP

• Informative representation of privacy
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2. Informative representation of privacy

3. Composition and central limit theorems

4. Amplifying privacy via subsampling

5. Application to deep learning

6. Application to 2020 United States Census
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What is composition?
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Composition surely leads to a
privacy compromise. But how fast?



Definition of composition

Let M1 : X → Y1 and M2 : X × Y1 → Y2 be private algorithms. Define their
composition M : X → Y1 × Y2 as

M(S) = (M1(S),M2(S,M1(S)))

Given a sequence of algorithms Mi : X × Y1 × · · · × Yi−1 → Yi for i ⩽ k,
recursively define the composition:

M : X → Y1 × · · · × Yk
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Tensor product of trade-off functions

Definition

The tensor product of two trade-off functions f = T (P,Q) and g = T (P ′, Q′) is
defined as

f ⊗ g := T (P × P ′, Q×Q′)

• Well-defined

• The operator ⊗ is commutative and associative

• For GDP, Gµ1
⊗Gµ2

⊗ · · · ⊗Gµk
= Gµ, where µ =

√
µ2
1 + · · ·+ µ2

k
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Composition is an algebra

Proposition

Suppose Mi(·, y1, · · · , yi−1) is fi-DP for all y1 ∈ Y1, . . . , yi−1 ∈ Yi−1. Then the
composition algorithm M : X → Y1 × · · · × Yk is

f1 ⊗ · · · ⊗ fk-DP

• Cannot be improved in general

• Composition in f-DP is reduced to algebra

• k-step composition of µ-GDP algorithms is
√
kµ-GDP
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Central limit theorem for f-DP

Theorem (DRS)
Let {fki : 1 ⩽ i ⩽ k, k = 1, 2, . . .} be a triangular array of trade-off functions,
each being O(1/

√
k) close to perfect privacy. Then

lim
k→∞

fk1 ⊗ fk2 ⊗ · · · ⊗ fkk = Gµ

• The convergence is uniform on [0, 1]

• µ can be computed from {fki}

• If Mki is fki-DP, their composition is approximately µ-GDP

• An effective approximation tool

• GDP is to f-DP as Gaussian variables (rvs) to general rvs
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Central limit theorem for ϵ-DP

Theorem (DRS)

Fix µ > 0 and assume ϵ =
√
µ/k. Then

Gµ

(
α+

c

k

)
− c

k
⩽ f⊗k

ϵ,0 (α) ⩽ Gµ

(
α− c

k

)
+

c

k

• Local computation is #P-complete [Murtagh, Vadhan ’16]

• Sharper than the O(1/
√
k) bound in Berry–Esseen

Privacy CLT Beats Berry–Esseen for ϵ-DP! Why?

• Due to randomization of rejection rules, leading to continuity of trade-off
functions
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A numerical example

10-fold composition of (1/
√
10, 0)-DP. δ = 0.001 in green curve
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Properties of f-DP

• Informative representation of privacy

• Algebraically convenient and tight composition operations
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2. Informative representation of privacy

3. Composition and central limit theorems

4. Amplifying privacy via subsampling

5. Application to deep learning

6. Application to 2020 United States Census
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What is subsampling for privacy?

Given dataset S, apply the algorithm M on a subsampled dataset sub(S),
resulting a new algorithm M ◦ sub(S)

• Subsampling provides stronger privacy guarantees than when run on the
whole dataset

• A frequently used tool for amplifying privacy

36 / 53Weijie@Wharton



Subsampling theorem for f-DP

subm uniformly picks an m-sized subset from S. Let p := m/n

p-sampling operator Cp acting on trade-off functions

Cp(f) := Conv
(
min{fp, f−1

p }
)
= min{fp, f−1

p }∗∗

• fp = pf + (1− p)Id, with Id(α) = 1− α

• min{fp, f−1
p }∗∗ is double (convex) conjugate of min{fp, f−1

p } (the greatest
convex lower bound)

If M is f-DP, then M ◦ subm is Cp(f)-DP, and it is tight

• The subsampling theorem for Rényi DP is complex [Wang, Balle,
Kasiviswanathan ’18]
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Numerical examples

0 x∗ fp(x
∗) 1

0

x∗

fp(x
∗)

1

f

fp

f−1
p

Cp(f)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
fε,δ

fε′,δ′

Cp(fε,δ)

Left: f = G1.8, p = 0.35. Right: ϵ = 3, δ = 0.1, p = 0.2

38 / 53Weijie@Wharton

Our gain



Properties of f-DP

• Informative representation of privacy

• Algebraically convenient and tight composition operations

• Sharp privacy amplification via subsampling
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Paper

Deep Learning with Gaussian Differential Privacy

Harvard Data Science Review, 2020

• Zhiqi Bu (Penn/Amazon)

• Jinshuo Dong (Penn/Northwestern/Tsinghua)

• Qi Long (Penn)
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Privacy concerns in deep learningPrivacy Issues of Training Data

Dataset Server Model

• Private deep learning by Google Brain [Abadi et al ’16]

41 / 53Weijie@Wharton



Privacy concerns in deep learningPrivacy Issues of Training Data

Dataset Server Model

• Private deep learning by Google Brain [Abadi et al ’16]

41 / 53Weijie@Wharton



Private deep learning [Abadi et al ’16]

Algorithm 1 NoisySGD

Input: Dataset S = {x1, . . . , xn}, loss function `(✓, x).
Parameters: initial weights ✓0, learning rate ⌘t,

subsampling probability p, number of
iterations T , noise scale �, gradient norm bound R.

for t = 0, . . . , T � 1 do
Take a Poisson subsample It ✓ {1, . . . , n} with subsampling probability p
for i 2 It do

v
(i)
t  r✓`(✓t, xi)

v̄
(i)
t  v

(i)
t / max

�
1, kv(i)

t k2/R
 

. Clip gradient

✓t+1  ✓t � ⌘t · 1
|It|

⇣P
i2It

v̄
(i)
t + �R · N (0, I)

⌘
. Gaussian mechanism

Output ✓T

The analysis of the overall privacy guarantee of NoisySGD makes heavy use of the compositional
and subsampling properties of f -DP. We first focus on the privacy analysis of the step that computes
✓t+1 from ✓t. Let M denote the gradient update and write Samplep(S) for the mini-batch It (we
drop the subscript t for simplicity). This allows us to use M � Samplep(S) to represent what
NoisySGD does at each iteration. Next, note that adding or removing one individual would change

the value of
P

i2It
v̄

(i)
t by at most R in the `2 norm due to the clipping operation, that is,

P
i2It

v̄
(i)
t

has sensitivity R. Consequently, the Gaussian mechanism with noise standard deviation �R ensures
that M is 1

� -GDP. With a few additional arguments, in Appendix B we show that NoisySGD is

min{f, f�1}⇤⇤-DP with f =
�
pG1/� + (1� p)Id

�⌦T
.

To facilitate the use of this privacy bound, we now derive an analytically tractable approximation
of min{f, f�1}⇤⇤ using the privacy central limit theorem in a certain asymptotic regime, which
further demonstrates the mathematical coherence and versatility of the f -DP framework. The
central limit theorem shows that, in the asymptotic regime where p

p
T ! ⌫ for a constant ⌫ > 0

as T !1,

f =
�
pG1/� + (1� p)Id

�⌦T ! Gµ,

where µ = ⌫
p

e1/�2 � 1. Thus, the overall privacy loss in the form of the double conjugate satisfies

min{f, f�1}⇤⇤ ⇡ min{Gµ, G�1
µ }⇤⇤ = G⇤⇤

µ = Gµ. (4)

As such, the central limit theorem demonstrates that NoisySGD is approximately p
p

T (e1/�2 � 1)-
GDP. Denoting by B = pn the mini-batch size, the privacy parameter p

p
T (e1/�2 � 1) equals

B
n

p
T (e1/�2 � 1). Intuitively, this reveals that NoisySGD gives good privacy guarantees if B

p
T/n

is small and � is not too small.
As an aside, we remark that this new privacy analysis is di↵erent from the one performed in

Section 5 of [17]. Therein, the authors consider Algorithm 1 with uniform subsampling and obtain
a privacy bound that is di↵erent from the one in the present paper.

Next, we present a private version of Adam [32] in Algorithm 2, which we refer to as NoisyAdam
and can be found in [2]. This algorithm has the same privacy bound as NoisySGD in the f -DP
framework. In short, this is because the momentum mt and ut are deterministic functions of the
noisy gradients and no additional privacy cost is incurred due to the post-processing property of

8

• Moments accountant for (ϵ, δ)-DP [Abadi et al ’16]

• Extends to noisy Adam
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Can the f-DP framework
improve privacy analysis?



Privacy analysis of deep learning

SGD equation
θt+1 = SGD ◦ sub(S; θt)

Observation
Deep Learning = Subsampling + Composition

Thus, we get

Theorem (BDLS)
Private deep learning M(S) = (θ1, θ2, . . . , θT ) is asymptotically µ-GDP with

µ =
m

n

√
T (e1/σ2 − 1)

• m is the mini-batch size, and n is the total number of examples
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f-DP gives tighter analysis on MNIST

0.0 0.2 0.4 0.6 0.8 1.0
Type I error
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95.0% accuracy, = 1.3
0.23-GDP by CLT
(1.19,1e-5)-DP by MA
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96.6% accuracy, = 1.1
0.57-GDP by CLT
(3.01,1e-5)-DP by MA

Solid red: our f-DP analysis. Dashed blue: moments accountant by Google Brain
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f-DP gives tighter analysis on MNIST

0.0 0.2 0.4 0.6 0.8 1.0
Type I error

0.0

0.2

0.4

0.6

0.8

1.0

Ty
pe

 II
 e

rro
r

97.0% accuracy, = 0.7
1.13-GDP by CLT
(7.1,1e-5)-DP by MA

• Our f-DP interpretation is N (0, 1) vs N (1.13, 1); while MA gives
(7.1, 10−5)-DP, noting e7.1 = 1212.0
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A Pareto improvement of privacy vs accuracy trade-off
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Our framework
Google Brain
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2. Informative representation of privacy

3. Composition and central limit theorems

4. Amplifying privacy via subsampling

5. Application to deep learning

6. Application to 2020 United States Census
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Paper

Revealing the Underestimated Privacy of the 2020 United States Census

Coming soon

• Buxin Su (Penn)

• Chendi Wang (Penn)
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US Census Bureau adopted DP in 2020 decennial
census

• Most queries take integer values, e.g.,

M(S) =
∑

x∈NY

1[
x is 18 or older

]

• Add integer-valued noise to census microdata, with pdf

pDG(x) =
1

Z(µ, σ2)
e−

(x−µ)2

2σ2 , for all x ∈ Z

• Composition of 9 queries for each geographical level
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Bureau hasn’t fully used up privacy budget!

Theorem (SSW)
For any δ, f-DP yields a tighter ϵ privacy bound for census data than the
Bureau’s approach
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• Resolved an open question posed by the US Census Bureau [Kifer et al ’22]
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Less noise can be added to the census for the same
privacy budget



Reduced noise with equivalent privacy bound

Comparison of variance: Bureau’s approach vs. our f-DP based approach

Geographic
Level

US State County PEPG

Bureau’s 69.40 5.00 16.07 10.47
Ours 54.74 4.25 13.21 8.71

Reduction 13.9% 15% 17.8% 16.8%

Geographic
Level

Tract Subset
Group

Tract Subset
Optimized Block

Group
Block

Bureau’s 10.47 5.77 10.47 451.13
Ours 8.71 4.89 8.71 338.28

Reduction 16.8% 15.3% 16.8% 25%

• More accurate data for downstream applications of census
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Concluding remarks



Privacy: a foundation for trustworthy data science

pri vacy
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ncy

accountability
robustness
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Summary

Informativeness Composition Subsampling

ϵ-DP

(ϵ, δ)-DP

Divergence based DPs

f-DP

Gaussian differential privacy

• Trade-off functions are informative

• Tight composition

• Sharp subsampling

• State-of-the-art applications to private deep learning and US Census
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Take-home messages

Available in TensorFlow Privacy

1 Gaussian Differential Privacy

2 A Statistical Viewpoint on Differential Privacy: Hypothesis Testing, Representation
and Blackwell’s Theorem

3 Deep Learning with Gaussian Differential Privacy

4 Revealing the Underestimated Privacy of the 2020 United States Census
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Learned from Blackwell & Gauss
Despite its origin in computer science,
DP is fundamentally a statistical concept



Proof sketch

Why f1 ⊗ f2 ⊗ · · · ⊗ fk ≈ Gµ?

Let fi = T (Pi, Qi). Test H0 : y ∼ P1 × · · · × Pk vs H1 : y ∼ Q1 × · · · ×Qk

• Optimal test is

T :=
L− EPL√
VarP (L)

,

where the log-likelihood ratio

L = log

k∏

i=1

qi(yi)

pi(yi)
=

k∑

i=1

log
qi(yi)

pi(yi)
≡

k∑

i=1

Li(yi)

• Under H0, T is approximately N (0, 1); and under H1, T is approximately
N (µ, 1)

• Le Cam’s third lemma
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