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Abstract

Applied statisticians use sequential regression procedures to produce a ranking of explanatory
variables and, in settings of low correlations between variables and strong true effect sizes, expect
that variables at the very top of this ranking are truly relevant to the response. In a regime of
certain sparsity levels, however, three examples of sequential procedures—forward stepwise, the
lasso, and least angle regression—are shown to include the first spurious variable unexpectedly
early. We derive a rigorous, sharp prediction of the rank of the first spurious variable for these
three procedures, demonstrating that the first spurious variable occurs earlier and earlier as the
regression coefficients become denser. This counterintuitive phenomenon persists for statistically
independent Gaussian random designs and an arbitrarily large magnitude of the true effects.
We gain a better understanding of the phenomenon by identifying the underlying cause and
then leverage the insights to introduce a simple visualization tool termed the “double-ranking
diagram” to improve on sequential methods.

As a byproduct of these findings, we obtain the first provable result certifying the exact
equivalence between the lasso and least angle regression in the early stages of solution paths
beyond orthogonal designs. This equivalence can seamlessly carry over many important model
selection results concerning the lasso to least angle regression.

Keywords. Lasso; Least angle regression; Forward stepwise regression; False variable; Familywise
error rate.

1 Introduction

Consider observing an n-dimensional response vector y that is generated by a linear model

y = Xβ + z,

where X ∈ Rn×p is a design matrix, β ∈ Rp is a vector of regression coefficients, and z ∈ Rn
is a noise term. To find explanatory variables that are associated with the response y, especially
in the setting where p > n, three sequential regression procedures are frequently used: forward
stepwise regression, the lasso (Tibshirani, 1996), and least angle regression (Efron et al., 2004).
These popular methods build a model by sequentially adding or removing variables based upon
some criterion. In a very natural way, a sequential method ranks explanatory variables according
to when the variables enter the solution path. With this ranking of variables in place, a routine
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practice for forming the final model is to select all variables ranked earlier than a certain cutoff and
discard the rest.

When running a sequential procedure, a practitioner often wishes to understand where along the
solution path noise variables (regressors with zero regression coefficients) start to enter the model.
In particular, when is the first noise variable selected? A better understanding of this problem
is desirable from at least two perspectives. First, the rank of the first noise variable sheds light
on the difficulty of consistent model selection, offering guidelines for selecting important variables.
More precisely, if the rank is about the same size as the sparsity (the total number of nonzero
regression coefficients), we could obtain a model retaining most of the important variables without
causing many false selections using a sequential method, whereas a small rank implies that signal
variables (regressors with nonzero regression coefficients) and noise variables are interspersed early
on in the solution path and, as a result, a false selection must occur long before the power reaches
one. Second, the empirical performance of numerous tools for post-selection inference in linear
regression is, to a large extent, contingent upon whether the first noise variable occurs early or not
(Lockhart et al., 2014; G’Sell et al., 2016; Tibshirani et al., 2016). Insights into the occurrence of
the first false variable would be valuable for improving these tools and developing new ones.

However, despite an extensive body of work on these sequential methods, the literature remains
relatively silent on questions of the first false variable. Existing results address these questions
in a limited setting, mostly characterizing under what conditions all the signal variables precede
the first noise variable, that is, perfect support recovery or, put more simply, selecting the exactly
correct model. Specifically, this set of results guarantees perfect support recovery using a certain
sequential method provided sufficiently strong effect sizes compared to the noise level and a form
of local orthogonality of the design matrix. These results can be found for both the lasso (Zhao
and Yu, 2006; Bickel et al., 2009; Wainwright, 2009) and forward stepwise (Tropp, 2004; Zhang,
2009; Cai and Wang, 2011).

Figure 1 illustrates a simulation study that examines when the first noise variable gets selected
by the lasso. The design matrix X is of size 2000 × 1800 consisting of independent N (0, 1/2000)
entries, the noise term z is comprised of independent standard normals, and the regression coef-
ficients are set to β1 = · · · = βk = 100

√
2 log(1800) = 387.2 and βj = 0 for all j > k, with the

sparsity k varying from 10 to 320. Note that the true effect sizes can be practically thought of as
infinitely strong and the sample correlations between the regressors are small due to the indepen-
dence. Fig. 1 shows that, in the low sparsity regime, the pairs (sparsity, rank) lie close to the 45◦

line (precisely, it is the line y = x + 1). This behavior is equivalent to saying that all the signal
variables are selected prior to any false variables, which is in perfect agreement with a copious body
of theoretical results available in the literature.

Strikingly, once the sparsity exceeds a certain level (around 140 in the example), a phenomenon
that is not explained by existing theory occurs: the average rank of the first noise variable becomes
substantially smaller than the sparsity k and, more surprisingly, the rank keeps decreasing as the
sparsity increases. This phenomenon clearly demonstrates the impossibility of perfect support
recovery in this non-extreme sparsity regime using the lasso, even though it is under high signal-
to-noise ratios and low correlations. Presumably, as the signal β is amplified by setting more
components to a large magnitude, one might instinctively anticipate that a sequential method such
as the lasso tends to include more signal variables at the beginning and, thus, would imagine that
the first noise variable would get selected later and later. Unfortunately, the counterintuitive results
as shown in Fig. 1 falsify this belief. We remark that a similar phenomenon is observed earlier in
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Figure 1: Rank of the first spurious variable along the lasso path. Recall that the rank equals
one plus the number of signal variables preceding the first spurious variable. We plot averages
from 500 independent replicates as dots. The 45◦ dashed line is shown for comparison. The
solid line plots exp(

√
(2n log p)/k−n/(2k)+log(n/(2p log p))) as a function of k, starting from

n/(2 log p).

Su et al. (2017), although they did not provide any justification for the observation.
Thus, concrete predictions and explanations are needed to better understand and improve

sequential methods in this sparsity regime. In response, we derive an analytical prediction that is
asymptotically exact for the first noise variable. The prediction applies to the three methods under
our consideration, namely forward stepwise, the lasso, and least angle regression, and potentially
to other sequential methods. Denote by T the rank of the first noise variable. Informally, the
prediction states that, in the setting of strong effect sizes and statistically independent regressors
as in Fig. 1, the three sequential procedures in the non-extreme sparsity regime all satisfy

log T ≈
√

2n log p

k
− n

2k
+ log

n

2p log p
. (1.1)

The formal statement of this result is given in Theorem 2 in § 2.
The prediction of T is additionally presented in Fig. 1, showing excellent agreement between

the predicted and observed behaviors. To better appreciate this result, note that the quantity as
an approximation to log T in (1.1) is smaller than log k once the sparsity k exceeds n/(2 log p),
suggesting the impossibility of perfect support recovery in this regime. This is consistent with the
negative result in Corollary 2 of Wainwright (2009). The prediction (1.1), however, implies more.
To show this, alternatively write the right-hand side of (1.1) as√

2n log p

k
− n

2k
+ log

n

2p log p
= −

[√
log p−

√
n

2k

]2
+ log

n

2 log p
.

The expression above reveals that the predicted log T decreases as the sparsity k ≥ n/(2 log p)
increases. Put differently, the first noise variable is bound to occur earlier as the signal vector β
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gets denser, successfully predicting the phenomenon shown in Fig. 1. While problems in selecting
the true model by the lasso have been empirically documented in earlier work (Fan and Song, 2010),
such sharp and analytical predictions are not available in the literature, perhaps due to technical
difficulties.

This result has several implications. First, once the underlying signals go beyond the very sparse
regime, using sequential procedures would inevitably lead to a very low power with familywise error
rate control, which is the probability of selecting one or more noise variable, no matter how large
the effect sizes are. Taking a simple example in which both n and p are set to be equal and large
and k = εp for some fixed 0 < ε < 1, the prediction asserts that the first false variable is included
after no more than

exp
[
(1 + o(1))

(√
2(log p)/ε− 1/(2ε)− log(2 log p)

)]
= exp

[
(1 + o(1))

√
2(log p)/ε

]
steps (note that

√
2 log p/ε is the leading component for a large p). For a fixed ε, however, the

predicted rank exp
[
(1 + o(1))

√
2 log p/ε

]
only accounts for a vanishing fraction of the k = εp

signal variables, which can be gleaned from the fact that
√

2 log p/ε = o(log p). In other words,
the three sequential methods being considered yield vanishing power if no noise variable is allowed
to be included, even in the noiseless case (z = 0). In particular, these negative results are derived
under Gaussian designs with independent columns, which have vanishing sample correlations and
satisfy some conditions believed to be favorable for model selection, including restricted isometry
properties (Candès and Tao, 2005) and restricted eigenvalue conditions (Bickel et al., 2009). Thus,
the negative results are likely to carry over to a much broader class of design matrices. In fact,
extensive simulations carried out in § 3 demonstrate that problems of the first false variable are
only exacerbated in more general settings.

Another implication yielded by this prediction is that the three sequential regression methods
seem to behave similarly in ranking variables, at least in the independent random design setting.
Compared with forward stepwise, the lasso and least angle regression, along with their infinitesimal
version forward stagewise regression (see, for example, Efron et al. (2004)), are long-time considered
less greedy because at each step they gradually blend in a new variable instead of adding it discon-
tinuously (Efron et al., 2004). To be more precise, the forward stepwise selects the predictor with
the largest absolute correlation with the residual vector and then aggressively takes a large step in
the direction of the selected predictor, whereas the others proceed in a more democratic manner
along a direction equiangular between the set of selected predictors (the lasso and forward stagewise
regression bear certain restrictions on this equiangular approach). This critical distinction between
the two strategies is anticipated—or, at least wished—to lead to contrasting model selection perfor-
mance. Interestingly, this is not the case; these two strategies yield the same behavior of selecting
the first noise variables in our setting. As a byproduct, we obtain Theorem 3 for the lasso and
least angle regression, which, to the best of our knowledge, is the first mathematically provable
result certifying the exact equivalence between early solution paths of these two procedures beyond
orthogonal designs.

In the non-extreme sparsity regime, why do these distinct sequential methods select the first
false variable so early? Taking a closer look at the derivation of the prediction, we can identify the
cause, which is, loosely speaking, due to the greedy nature of these sequential regression methods.
Moreover, the equiangular strategy adopted by the lasso and least angle regression fails to alleviate
greediness from the perspective of when the first noise variable gets selected. To shed light on
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this cause, recall that all the three methods at each time include a variable that roughly has the
largest absolute inner product with the current residuals. As the regression coefficients get denser,
the solution at the beginning of the path is overwhelmingly biased and the residual vector absorbs
many of the true effects contributed by the nonzero components of β. As a result, some irrelevant
variable would exhibit high correlations with the residuals and hence is selected incorrectly and
early. That being said, it requires several novel ideas to precisely characterize what we describe
here.

With this underlying cause in mind and to improve on sequential methods, we introduce the
double-ranking diagram to identify early false variables along solution paths. In slightly more
detail, this diagram contrasts the rank of each variable given by a sequential procedure (horizontal
axis) with that given by a low-bias estimator (vertical axis) such as the least-squares estimator.
In spite of a significant horizontal rank, an early noise variable might be revealed by its possibly
less significant vertical rank. Related ideas have appeared in recent variable screening work, for
instance, Wang and Leng (2016). We demonstrate the usefulness of this diagram via a mix of
theoretical and empirical results.

2 Understanding the Phenomenon

2.1 Predicting the first spurious variable

We consider a sequence of problems indexed by (kl, nl, pl), where kl, nl, and pl are all assumed to
grow to infinity as l → ∞ in asymptotic statements. The subscript l is often omitted when clear
from the context. Letters ci and Ci in various settings denote positive constants that do not depend
on the problem index l. Below we formalize our working hypothesis concerning the linear model
y = Xβ + z.

Assumption 1. The design X ∈ Rn×p has independent N (0, 1/n) entries and z ∈ Rn consists
of independent N (0, σ2) errors. We further assume X and z are independent. The coefficient
vector β has k fixed components equal to some M 6= 0 and the rest are all zero. Last, we assume
c1p/ logc2 p ≤ n ≤ c3p and c4n ≤ k ≤ min{0.99p, c5n log0.99 p} for arbitrary positive constants
c1, c2, c3, c4, and c5.

The assumption on (k, n, p) is satisfied in some popular examples studied in the literature, for
instance, the linear sparsity framework where k/p and n/p converge to some constants (Bayati
and Montanari, 2012). Moreover, a number of cases leading to k = o(p) satisfy Assumption 1, for
instance, n = c1p/ logc2 p and k = c4n. Under this assumption, each column of X is approximately
normalized, having about unit Euclidean norm. This random design is conventionally considered
to be easy for model selection since it obeys restricted isometry properties (Candès and Tao, 2005)
or restricted eigenvalue conditions (Bickel et al., 2009) with high probability. The nonrandom
parameters σ ≥ 0 and M both implicitly depend on the index l and thus are allowed to vary
freely. In particular, the noiseless case σ = 0 is not excluded, in which the signal-to-noise ratio
is essentially infinite. For completeness, the number 0.99 can be replaced by any positive number
smaller than 1.

Before presenting our main results Theorems 1 and 2, we give a brief overview of the three
methods for ease of reading. In broad outlines, least angle regression increases the coefficients of
included variables in their joint least squares direction until an unselected variable has as much
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inner product with the residuals, which is included in the next step. Least angle regression stops
when the residuals are zero or all variables are included. If a nonzero coefficient is removed from
the active set whenever it hits zero, this adjustment leads to the lasso, which is better-known as
the minimizer of the convex program 1

2‖y −Xb‖
2
2 + λ‖b‖1 over b ∈ Rp for λ ranging from infinity

to zero. Forward stepwise is described in detail in § 8.5 of Weisberg (1980). In our setting, the
intercept is not included and normalization is not applied to any columns of X. Last, recall that
T denotes the rank of the first noise variable, and oP(1) denotes a sequence of random variables
converging to zero in probability.

Theorem 1. Under Assumption 1, the first spurious variable selected by each of forward stepwise,
the lasso, and least angle regression satisfies

log T ≤ (1 + oP(1))
[√

2n(log p)/k − n/(2k) + log(n/(2p log p))
]
.

If the signal magnitude M is not sufficiently large compared with σ, the logarithm of T would
be much smaller than the upper bound appearing in the display above, meaning that the problems
of the first false variables could be worse. Interestingly, this bound is sharp when M is sufficiently
large compared with σ, as demonstrated in the theorem below.

Theorem 2. Under Assumption 1 and in addition provided that σ/M → 0, the three sequential
methods obey

log T = (1 + oP(1))
[√

2n(log p)/k − n/(2k) + log(n/(2p log p))
]
.

Provided in the Appendix, the proofs of both theorems involve some techniques that are likely
to extend beyond the three sequential methods. The condition concerning the ratio between σ and
M can be relaxed to |M |/σ �

√
n/k. Setting k ≈ n log0.99 p as in Assumption 1, for example,

Theorem 2 follows if M/σ is bounded away from 0. An immediate consequence of this theorem is
as follows.

Corollary 2.1. Under Assumption 1, each of the three methods in the noiseless case (σ = 0) obeys

log T = (1 + oP(1))
[√

2n(log p)/k − n/(2k) + log(n/(2p log p))
]
.

In addition to predicting the phenomenon observed in Fig. 1, Theorem 2 together with Corollary
2.1 demonstrates that having an even stronger signal magnitude does not affect T much as long as
it exceeds a certain level.

The theorems presented here differ from results that are found extensively in the literature
claiming a high probability of selecting the exactly correct model, mainly due to assuming dif-
ferent sparsity regimes of the regression coefficients β. Explicitly, the former assumes c4n ≤ k ≤
min{0.99p, c5n log0.99 p} whereas the latter often, if not always, assumes a restrictive sparsity regime
such as k = O(n/ log p) or k � n/ log p. In fact, under Assumption 1, it is unrealistic to expect
perfect model selection using sequential methods: below a simple corollary of Theorem 1 shows the
number of signal variables before the first false variable only accounts for an insignificant fraction
of the total number of signal variables.

Corollary 2.2. Under Assumption 1, each of the three methods satisfies

T

k
−→ 0 in probability.
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To better appreciate Corollary 2.2, consider the scenario where k/p→ ε and n/p→ δ for some
positive constants ε < 1 and δ. Theorem 1 shows that, up to a vanishing fraction, the logarithm
of T is no larger than

√
2δ(log p)/ε − δ/(2ε) + log(δ/(2 log p)) = (1 + o(1))

√
2δ(log p)/ε. This

expression for approximating log T yields T ≤ exp((1 + o(1))
√

2δ(log p)/ε) � εp = k, confirming
Corollary 2.2 in this linear sparsity regime. We summarize the finding in the corollary below.

Corollary 2.3. Under Assumption 1 and additionally provided that k/p → ε and n/p → δ for
arbitrary positive constants ε < 1 and δ, each of the three methods satisfies

T ≤ e(1+oP(1))
√

2δ(log p)/ε.

This regime of linear sparsity is previously employed in Su et al. (2017), which studies limitations
of the lasso for the false discovery rate control. The techniques developed there are not applicable
to studying the first noise variable, which is a much finer problem.

2.2 Equivalence between lasso and least angle regression

In contrast to the other two methods, the lasso would drop a selected variable if its coefficient
hits zero. This irregularity of the lasso path might lead to ambiguity in interpreting the rank T
in Theorems 1 and 2. Fortunately, as a byproduct of the above, the theorem below rules out the
possibility of such ambiguity.

Theorem 3. Assume X has independent N (0, 1/n) entries. Then, with probability at least 1−p−2,
no drop-out occurs before the first

min
{⌈
c
√
n/ log p

⌉
, p
}

variables along the lasso path are selected, where dxe denotes the least integer greater than or equal
to x and c > 0 is some universal constant.

Note that Theorem 3 only requires the normality of X, as opposed to additional conditions
imposed on z,β, and (k, n, p) in Assumption 1. As seen from its proof in the Appendix, the
validity of the theorem depends on the design matrix X basically only through its restricted
isometry property. Thus, this result can seamlessly carry over to other matrix ensembles with an
appropriate restricted isometry property constant, such as Bernoulli random matrices (Candès and
Tao, 2005).

Under Assumption 1, log(min{dc
√
n/ log pe, p}) = logdc

√
n/ log pe �

√
2n(log p)/k − n/(2k).

Consequently, Theorem 3 together with Theorem 1 ensures that the first noise variable selected by
the lasso is not preceded by any drop-out with probability approaching one.

This byproduct provides new insights into the lasso path and is a contribution of independent
interest to high-dimensional statistics. The lasso is known to coincide exactly with least angle
regression until the first time the lasso drops a selected variable (Efron et al., 2004; Tibshirani and
Taylor, 2011). To our knowledge, however, the question of where along the path the lasso and least
angle regression differ has not been addressed in prior research, perhaps due to technical difficulties.
By confirming the equivalence between these two procedures, Theorem 3 allows us to carry over
well-known results on the lasso for model selection to least angle regression.
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2.3 Heuristics and insights

In this section we give an informal derivation of Theorems 1 and 2. Although our discussion below
lacks rigor, nevertheless, the goal is to gain insights into this counterintuitive phenomenon. For the
full proofs, see the Appendix.

We focus on the noiseless case z = 0 in Assumption 1, which is presumably the most ideal
scenario for model selection. Denote by S = {j : βj 6= 0} the support of the signals and by β̂ an
estimate given by any of the three sequential methods somewhere along the solution path. Write
j1 /∈ S for the index off the support having the largest inner product in magnitude with the residual
y −Xβ̂ = X(β − β̂), and j2 ∈ S for the index on the support having the (T − 1)th largest inner
product in magnitude with the residual. By using some technical arguments found in the Appendix,
we get

X>j1X(β − β̂) ≈M
√

2k log(p− k)

n
, X>j2X(β − β̂) ≈M +M

√
2k log(k/T )

n
. (2.1)

Above and henceforth, X> denotes the transpose of X. Recognizing that the sequential meth-
ods rank variables essentially according to the correlations with the residual, where in our case
correlations are roughly equivalent to inner products since the columns of X are approximately
normalized, from (2.1) we must have

M

√
2k log(p− k)

n
≈M +M

√
2k log(k/T )

n

at the point where the first false variable is just about to enter the model. In the linear sparsity
regime k/p→ ε, n/p→ δ, this yields

log T ≈
√

2δ log p

ε
.

The exposition above suggests that an early spurious variable is mainly due to a large inner
product X>j1X(β − β̂), which would not be the case if β̂ was a low-bias estimator of β. However,

until a significant proportion of the variables have been selected, a solution β̂ provided by a se-
quential method is overwhelmingly biased. Another way to formalize this point is that the residual
X(β − β̂) still contains a significant amount of true effects, largely contributed by presently unse-
lected variables. This bias acts as if it were noise and, as a consequence, some irrelevant variables
happen to correlate highly with the residual vector, leading to false variables selected early. This is
not a matter of the signal-to-noise ratio; an increasing signal magnitude would enlarge the bias as
well and, hence, noise variables always occur early. Other examples of pseudo noise caused by bias
have been observed in previous work (Bayati and Montanari, 2012). To be complete, we remark
that this phenomenon does not appear in regimes of extreme sparsity (see, for example, Wainwright
(2009)).

3 Illustrations

3.1 Numerical examples

We present simulation experiments to illustrate the first false variable of the three sequential meth-
ods, along with the predictions given by Theorems 1 and 2. Specifically, we numerically examine
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three studies concerning the effect of design matrix shapes, signal magnitudes, and correlations
between the columns of X on the first spurious variable. Two scenarios are experimented for each
study.

Study 1. In the first experiment (square design) the designX of size 1000×1000 has independent
N (0, 1/1000) entries, the signals βj = 100 for j ≤ k and βj = 0 for j ≥ k + 1, and each noise
component zi follows N (0, 1) independently. In the second experiment (fat design) the design X is
changed to be size of 800× 1200 and has independent Bernoulli entries, which take value 1/

√
500

with probability half and otherwise −1/
√

500, while all the other assumptions remain the same.
Results of the two experiments are shown in Figure 2(a) and (b), respectively.

Study 2. In both experiments, the 500 × 1000 design matrix X consists of independent
N(0, 1/500) entries and each zi is independently distributed as N (0, 1). For the first experiment
(one mixture), we set βj = M for j = 1, . . . , 80 and βj = 0 for j = 81, . . . , 1000. For the second
one (two mixtures), we set βj = M for j = 1, . . . , 40, βj = M2/(10

√
2 log p) for j = 41, . . . , 80 and

βj = 0 for j = 81, . . . , 1000. The parameter M is varied from 0.2
√

2 log p to 10
√

2 log p. Note that
the two mixtures take the same value when M = 10

√
2 log p = 37.17. Results are shown in Fig. 2(c)

and (d).

Study 3. This scenario uses β obeying βj = 100
√

2 log p for j ≤ 80 and βj = 0 otherwise. The
noise z consists of independent standard normals. The 500× 1000 design matrix X has each row
independently drawn from N (0,Σ). For the 1000× 1000 covariance matrix Σ, the first experiment
(equi correlation) assumes Σij = ρ/n if i 6= j and Σjj = 1/n. In the second one (decaying
correlation), Σij = ρ|i−j|/n. Results are shown in Fig. 2(e) and (f).

Both the lasso and least angle regression closely match our predictions. Notably, the two
procedures yield exactly the same ranks of the first noise variables, hence supporting Theorem 3.
On the other hand, forward stepwise exhibits larger departures from the theoretical predictions,
mainly due to the slow convergence to the asymptotics, while as well showing a decreasing rank
once the sparsity exceeds a cutoff.

As shown in Fig. 2(a) and (b), the first false variable occurs earlier as n decreases while p gets
larger. In particular, the behaviors of the methods under Bernoulli random designs as in Fig. 2(b)
closely resemble that under Gaussian random designs. In Fig. 2(c), the rank of the first false
variable increases as the signal magnitude M is amplified. While this increasing rank is expected,
Fig. 2(d) in contrast illustrates a rather surprising phenomenon: the rank drops after M exceeds
a certain level. More precisely, given M ≥ 3.4

√
2 log p = 12.64, the lasso selects the first false

variable earlier and earlier even though the sparsity is fixed and each signal gets strengthened,
and the phenomenon is even more transparent for forward stepwise. Intuitively, this is because
the effective sparsity in the case of a moderately large M is smaller than the nominal sparsity
80. To see this, observe that the ratio of the signals of the first 40 components and the next 40
components is M/(M2/37.17) = 37.17/M , which is noticeably larger than 1. Put another way, the
first 40 components act as the main signals and, hence loosely speaking, the effective sparsity is
smaller than 80. In the presence of significant correlations between columns of X, Fig. 2(e) and
(f) clearly show that the problem of early false variables is further exacerbated.

3.2 HIV data

As a real data example, we consider the HIV-1 data introduced by Rhee et al. (2006) to study the
genetic basis of HIV-1 resistance to several drugs. Also used in a number of other works (Barber
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Figure 2: Rank of the first spurious variable in three studies. Averaged over 500 replicates,
the ranks of forward stepwise, the lasso, and least angle regression are marked with triangles,
dots, and crosses, respectively (the dots and the crosses overlap exactly so they look like solid
squares). The solid lines indicate the predictions given by Theorem 2. Note that for (c,d,e,f)
the prediction is constant since k = 80 is fixed.

and Candès, 2015; G’Sell et al., 2016; Janson and Su, 2016), this data set in particular contains
genotype information X ∈ R634×463 of 634 HIV-1-infected individuals across 463 locations after
removing duplicate and missing values. The columns of X are standardized to have zero mean and
unit Euclidean norm. The response y is synthetically generated by assigning an effect of 100

√
2 log p

to each of k uniformly randomly chosen columns of X and setting a noise level σ to 1.
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Table 1 reports the results averaged over 500 replicates. The three methods start to have a
decreasing rank around k = 25, which is much smaller than n/(2 log p) = 51.6. In addition, for
each level of sparsity, the first spurious variable is included much earlier than the predictions. This
gap is not surprising given that the predictions are tailored to independent Gaussian designs while
the design X from the HIV-1 data has strongly correlated columns. To be more precise, about
4600 column pairs of X have correlations greater than 10%.

Table 1: Rank of the first selected noise predictor averaged over 500 runs, with standard
errors given in parentheses. The predictions for sparsity no larger than n/(2 log p) = 51.6 are
just given as k + 1 and otherwise are given by Theorems 1 and 2. The last row presents the
predictions.

10 25 40 55 70 85 100

Lasso 10.4 (2.1) 15.4 (9.6) 10.3 (9.2) 6.8 (6.0) 5.5 (4.6) 4.4 (3.8) 3.7 (3.5)
Least angle regression 10.4 (2.1) 15.4 (9.6) 10.3 (9.2) 6.8 (6.0) 5.5 (4.6) 4.4 (3.8) 3.7 (3.5)
Forward stepwise 10.6 (1.9) 18.8 (10.0) 18.5 (15.9) 13.3 (16.0) 10.0 (11.7) 7.5 (8.2) 7.0 (7.6)
Gaussian designs 11.0 26.0 41.0 51.3 45.7 38.3 31.8

4 Visualizing Early Noise Predictors

As discussed in § 2.3, the three sequential procedures are marginal correlation-based at the be-
ginning of their solution paths, picking variables essentially according to the correlations with the
residuals. In light of this viewpoint, an unbiased or low-bias estimator of the signals β might pro-
vide sequential methods with complementary information for variable selection. The least-squares
estimator, if available, is a natural candidate.

We introduce the double-ranking diagram to bring together the strengths of sequential methods
and low-bias estimators such as the least-squares estimator β̂LS. Figure 3 presents two instances
of this diagram: one is in the same setting as Fig. 1 except for a different size 200×180 and a fixed
sparsity k = 50, and another is in the same setting as Table 1 with a fixed sparsity k = 60. For
each variable, the horizontal axis represents its rank by a sequential method, and the vertical axis
represents its rank by a low-bias estimator. For example, the horizontal rank of the jth variable is
given according to the magnitude of |β̂LSj |/

√
[(X>X)−1]jj : the larger this statistic is, the smaller

the rank is. Equivalently, the variables can be ranked using the t-values.
The double-ranking diagram can serve as a simple data visualization tool to assist the identifi-

cation of early false variables for sequential regression methods. Intuitively, an important variable
would presumably possess both a small horizontal rank and a small vertical rank, hence appearing
in the bottom-left corner of the diagram with a good chance. In light of this intuition, we screen
out variables that are selected early by a sequential method but have unusually large vertical ranks,
which in the case of least squares amount to small t-values or insignificant p-values. As seen from
Fig. 3, the first five false variables in each instance have much larger vertical ranks compared with
their horizontal ranks. In particular, these false variables are placed far away from the signal vari-
ables in the diagram. In view of this example, to use this diagram, one can set some threshold for
the vertical rank and only select variables that are below the threshold and in addition have signif-
icant horizontal ranks. On the other hand, in the low signal-to-noise ratio regime the diagram may
not give a clear-cut separation between false and true predictors, and its use requires some caution.
The following simple proposition states that the diagram can perfectly separate the first spurious
variable from all the true variables using the least-squares estimator under certain conditions.
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Figure 3: Double-ranking diagrams. Left: in the same setting as Fig. 1. Right: in the same
setting as the HIV data example. Vertical rankings are given by the least-squares estimators
and horizontal rankings are given by the least angle regression. The first five noise variables
along the solution path of least angle regression are marked with crosses.

Proposition 4.1. Under Assumption 1 and provided that n > δp and

M

σ
> 3

√
2δ log p

δ − 1

for some constant δ > 1, then in the double-ranking diagram the first noise variable has a greater
vertical rank than all the true variables.

The main ingredient behind this tool is a blend of new and old ideas found in the literature.
On the one hand, our discussion in § 2.3 demonstrates that, while sequential methods work well
in very sparse settings, as the signals get denser, the pseudo noise can accumulate quickly and
thus may dwarf some true signals no matter how strong the corresponding coefficients are. On
the other hand, the method of least squares favors the case of dense signals since the estimator
variances basically stay the same as the sparsity of the signals increases. In particular, variables
with sufficiently strong effects can stand out using the least-squares estimator in the presence of
highly correlated columns in the design matrix. This property of the least-squares estimator and
its variants plays a pivotal role for a number of variable screening procedures (Wasserman and
Roeder, 2009; Pokarowski and Mielniczuk, 2015; Wang and Leng, 2016).

5 Discussion

In the regime of non-extreme sparsity, the common intuition that sequential regression procedures
find a significant portion of all important variables before the first false variable merits some skep-
ticism. We have developed sharp predictions that disprove this intuition for forward stepwise, the
lasso, and least angle regression under independent Gaussian designs, which satisfy certain desir-
able properties for model selection. Additionally, the predictions hold irrespective of how strong the
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effect sizes are. Thus, the first noise variable is likely to occur very early in more general settings.
Our numerical results are in agreement with this viewpoint.

In light of the above, more caution is required when using these sequential methods, unless the
true regression coefficients are very sparse. Useful information for identifying early noise variables
can be provided by low-bias methods such as the least-squares estimators. The double-ranking
diagram is a simple tool that unifies the strengths of the two groups of methods.

Avenues for further investigation are in order. First, it is of interest to improve the predictions
for forward stepwise and extend the predictions to more sequential methods such as backward
stepwise and forward-backward stepwise. The simulation studies imply that the lower bound c4n
on the sparsity k in Assumption 1 could be possibly relaxed to n/(2 log p). Second, in the high-
dimensional setting where p > n, which low-bias estimator should we choose for the double-ranking
diagram to yield the vertical ranking? Candidates worth considering include the lasso with a small
penalty, ridge regression with a small penalty, generalized least-squares estimators (see, for example,
Wang and Leng (2016)), and some recently proposed ranking procedures such as in Ke and Yang
(2017). It is also worth incorporating strategies proposed by Fan et al. (2015) and Fan and Zhou
(2016) to investigate spurious discoveries. Last, as seen from Table 1, the rank of the first noise
variable has relatively large standard errors. A question of practical relevance is to characterize
this large variation.
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A Proofs

The appendix is devoted to proving the main technical results in the paper, namely Theorem 1,
Theorem 2, Theorem 3, and Proposition 4.1. Here we collect some notation used in the proofs.
Denote by S the true support set, that is, S = {j : βj 6= 0}. Let XS be the matrix formed by
columns from S, and X−j be the matrix derived by removing the jth column from X. We often
use the letter µ to denote Xβ ≡ XSβS , the signal part in linear regression. Throughout the
Appendix, assume M > 0 in Assumption 1 and adopt the following notation:

Γ =
β>X>y√
kM‖y‖

≡ ‖µ‖
2 + z>µ√
kM‖y‖

, D ≡ ‖y‖√
k
, (A.1)

where ‖ · ‖ denotes the usual `2 norm ‖ · ‖2.

A.1 Theorem 1

We state some preparatory lemmas for the proof of Theorem 1. The proofs of these lemmas are
given once the proof of Theorem 1 for all the three sequential procedures is complete.

Lemma A.1. Under Assumption 1, for an arbitrary constant c > 0, we have

W − c ≤ Γ ≤ 1 + c

with probability tending to one.

Lemma A.2. Let ζ1, . . . , ζm be independent standard normals and ζ(1) ≥ · · · ≥ ζ(m) be the order
statistics. For any (deterministic) sequence {im} such that im/m→ 0 as m→∞, we have

ζ(im) =

√
2 log

m

im
− (1 + oP(1))

log log m
im

2
√

2 log m
im

.

The proof of Lemma A.2 is omitted. Interested readers can find its proof in Chapter 2 of
de Haan and Ferreira (2007).

Lemma A.3. Under Assumption 1, we have

max
j
|X>j y| ≤ 2D

√
2k log p

n

with probability converging to one.

Lemma A.4 (for the lasso case). Fit y on the true support XS using the lasso and denote by
β̂S(λ) the lasso solution with penalty λ. Then, under Assumption 1, there exists a constant C such
that

max
i:β̂S

i (λ)=0

∣∣∣X>i Xβ̂S(λ)
∣∣∣ ≤ C

√
k‖β̂S(λ)‖0 log p

n
·D

holds uniformly for all λ > 0 with probability tending to one, where we make the (unusual) conven-
tion that max ∅ = 0.
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Above, ‖ · ‖0 equals the number of nonzero components of a vector, and β̂S is a p-dimensional
vector which takes 0 on S := {1, . . . , p} \ S. Next, we proceed to a definition that is the subject of
Lemma A.6.

Definition A.5. Let Ic(γ) be the largest positive integer I such that

γ +

√
2k log(k/I)

n
>

√
2k log(p− k)

n
− c,

and set Ic(γ) to 0 if it does not exist. Let Jc(γ) be the largest positive integer J such that

−γ +

√
2k log(k/J)

n
>

√
2k log(p− k)

n
− c,

and set Jc(γ) to 0 if it does not exist.

Lemma A.6. Let c be a constant. Under Assumption 1, all the following statements are true.

(a) Assume c > 0. If −c/2 < γ ≤ 0, then Jc(γ) ≥ Ic(γ), and

log Jc(γ) = (1 + o(1))

[
(c− γ)

√
2n log p

k
− (c− γ)2n

2k
+ log

n

2p log p

]
.

(b) Assume c > 0. If 0 < γ ≤ 1.01 and
√

2k log(p− k)/n > c + γ + c′ for some constant c′ > 0
(which is used to guarantee that Ic(γ) 6= k), then we have Ic(γ) ≥ Jc(γ) and

log Ic(γ) = (1 + o(1))

[
(c+ γ)

√
2n log p

k
− (c+ γ)2n

2k
+ log

n

2p log p

]
.

(c) Assume −0.1 < c < 0. If 0.11 < γ ≤ 1.01, then Ic(γ) ≥ Jc(γ) and

log Ic(γ) = (1 + o(1))

[
(c+ γ)

√
2n log p

k
− (c+ γ)2n

2k
+ log

n

2p log p

]
.

A detailed comment on how Ic(γ) and Jc(γ) are used in proofs is as follows. Under our As-
sumption 1, the rank of a variable Xi roughly depends on the absolute value of X>i y. The
random variable X>i y, as seen later in the proof of Theorem 1, is approximately distributed as
D(Γ+

√
k/nN (0, 1)) (note that Γ is defined in (A.1)). Intuitively, taking γ = Γ, the first display of

Definition A.5 represents the event that the Ith true variables along the solution path has an inner
product with y about equal to that of the first false variable (recognize from Lemma A.2 that the
Ith largest of k independent N (0, 1) random variables is about

√
2 log(k/I) and the largest of p−k

independent N (0, 1) random variables is about
√

2 log(p− k)). The notation Jc(γ) is introduced
because D(Γ+

√
k/nN (0, 1)) can also take a large magnitude if N (0, 1) in the parentheses is about

−
√

2 log(k/J).
Henceforth, γ is set to Γ and the dependence on the argument is omitted for both Ic and Jc.

Due to Lemma A.1, it is without loss of generality to consider Γ ∈ (−o(1), 1 + o(1)) and c fixed
and small.

With these preparatory lemmas in place, we are ready to prove Theorem 1 in the lasso and
least angle regression cases. The first part of the proof offers a simple representation of the order
statistics of X>S y, and this representation serves as useful ingredients in proofs of other results.
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Proof of Theorem 1 in the lasso and least angle regression cases. Without loss of generality, assume
that the true support set S = {1, . . . , k}. Let (1), (2), . . . , (k) be a permutation of 1, . . . , k such
that

X>(1)y ≥X
>
(2)y ≥ · · · ≥X

>
(k)y. (A.2)

Conditional on z and XSβS ≡ µ, the k exchangeable random variables X>1 y, . . . ,X
>
k y are

jointly normal with means all equal to µ>y/(kM) and an equicorrelated covariance that has
(k − 1)‖y‖2/(kn) on the diagonal and −‖y‖2/(kn) off the diagonal. These can be derived by
using properties of the conditional normal distribution: suppose W1, . . . ,Wm are iid standard
normals, then W1 is normally distributed with mean C/m and variance (m− 1)/m conditional on
W1+· · ·+Wm = C. Let ξ be normally distributed with mean 0 and variance ‖y‖2/(kn), and further
assume ξ to be independent of the random design X and the noise z. Then, X>1 y+ξ, . . . ,X>k y+ξ
are independent normals each with conditional mean µ>y/(kM) and conditional variance ‖y‖2/n.
Thus, conditional on µ and z, we see that

X>i y + ξ
d
=
µ>y

kM
+
‖y‖√
n
ζi

= D

(
Γ +

√
k

n
ζi

)

for independent standard normals ζ1, . . . , ζk. Note that X>1 y + ξ, . . . ,X>k y + ξ keep the same
ordering as in (A.2).

Consider the first time that the full lasso (regressing onX) is just about to include some variable
among X(Ic+1),X(Ic+2), . . . ,X(k−Jc), where Ic = Ic(Γ) and Jc = Jc(Γ) as in Definition A.5. Call
this variable X(L) and the penalty at that time λ∗. Denote by A the event that all the selected

variables preceding X(L) are true variables. On A (the complement of A), there are at most Ic+Jc
variables selected before the first false variable. Hence, we get

T ≤ Ic + Jc + 1

on A, where c > 0 is an arbitrary constant. By Lemma A.6, we get

log(Ic + Jc + 1) = log max{Ic, Jc}+O(1)

= (1 + oP(1))

[
(c+ |Γ|)

√
2n log p

k
− (c+ |Γ|)2n

2k
+ log

n

2p log p

]
+O(1)

= (1 + oP(1))

[
(c+ |Γ|)

√
2n log p

k
− (c+ |Γ|)2n

2k
+ log

n

2p log p

]

≤ (1 + oP(1))

[
(1 + 3c/2)

√
2n log p

k
− (1 + 3c/2)2n

2k
+ log

n

2p log p

]
with probability approaching one. Above, the O(1) term is absorbed into log max{Ic, Jc}. Lemma
AA.1 is also used in the inequality following the third equality, with c/2 in place of c. Since c > 0
is arbitrary, we get

log T ≤ log(Ic + Jc + 1) ≤ (1 + oP(1))

[√
2n log p

k
− n

2k
+ log

n

2p log p

]
.
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on A.
The rest is devoted to proving P(A)→ 0. To proceed, we point out an observation on the lasso:

the lasso running on the full design X is the same as regressing on XS until the T th variable gets
selected. In light of this observation, we perform the lasso on the true support XS . Since Ic +Jc is
much smaller than the bound given by Theorem 3, we can assume no drop-out has happened until
X(L) arrives and, hence, least angle regression is the same as the lasso. Because Ic+1 ≤ L ≤ k−Jc,
we get

X>(Ic+1)y ≥X
>
(L)y ≥X

>
(k−Jc)y. (A.3)

By Lemma A.2, the left-hand side of (A.3) obeys

X>(Ic+1)y = D

[
Γ +

√
2k log(k/(Ic + 1))

n
− (1 + oP(1))

√
k log log(k/(Ic + 1))

2
√

2n log(k/(Ic + 1))
− ξ

D

]

A little analysis reveals that Assumption 1 implies

√
k log log(k/(Ic + 1))

2
√

2n log(k/(Ic + 1))
= oP(1).

Hence, we get

X>(Ic+1)y = D

[
Γ +

√
2k log(k/(Ic + 1))

n
− oP(1)− ξ

D

]

= D

[
Γ +

√
2k log(k/(Ic + 1))

n
+ oP(1)

]

≤ D

[√
2k log(p− k)

n
− c+ oP(1)

]
.

Similarly, the right-hand side of (A.3) obeys

X>(k−Jc)y = D

[
Γ−

√
2k log(k/(Jc + 1))

n
+ oP(1)

]

≥ D

[
−
√

2k log(p− k)

n
+ c+ oP(1)

]

= −D

[√
2k log(p− k)

n
− c+ oP(1)

]
.

Thus, from (A.3) it follows that

D

[√
2k log(p− k)

n
− c+ oP(1)

]
≥X>(L)y ≥ −D

[√
2k log(p− k)

n
− c+ oP(1)

]
,

yielding ∣∣∣X>(L)y∣∣∣ ≤ D
[√

2k log(p− k)

n
− c+ oP(1)

]
. (A.4)
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The KKT conditions of the lasso at λ∗ give∣∣∣X>(L) (y −Xβ̂S)∣∣∣ = λ∗.

The equality above together with (A.4) and Lemma A.4, which gives X>(L)Xβ̂
S = oP(D), yields

λ∗ =
∣∣∣X>(L) (y −Xβ̂S)∣∣∣ ≤ D

[√
2k log(p− k)

n
− c+ oP(1) + |X>(L)Xβ̂

S |/D

]

= D

[√
2k log(p− k)

n
− c+ oP(1)

]
.

(A.5)

Now, we seek a contradiction to get P(A)→ 0. Since none of Xk+1, . . . ,Xp has been included
at λ∗ on the event A, we get

max
k+1≤j≤p

∣∣∣X>j (y −Xβ̂S)∣∣∣ ≤ λ∗ ≤ D
[√

2k log(p− k)

n
− c+ oP(1)

]
. (A.6)

Recognizing the independence between all Xj , j ≥ k + 1 and y −Xβ̂S , we get

max
k+1≤j≤p

∣∣∣X>j (y −Xβ̂S)∣∣∣ ≥ max
k+1≤j≤p

∣∣∣X>j y∣∣∣− max
k+1≤j≤p

∣∣∣X>j Xβ̂S∣∣∣
= max

k+1≤j≤p

∣∣∣X>j y∣∣∣− oP(D).

Now we turn to focus on maxk+1≤j≤p
√
n|X>j y|/‖y‖, which is distributed as the maximum absolute

values of p− k iid standard normals. Hence, Lemma A.2 gives

max
k+1≤j≤p

√
n|X>j y|
‖y‖

=
√

2 log(p− k)− (0.5 + oP(1)) log log(p− k)√
2 log(p− k)

.

Consequently,

max
k+1≤j≤p

∣∣∣X>j (y −Xβ̂S)∣∣∣ ≥ max
k+1≤j≤p

∣∣∣X>j y∣∣∣− oP(D)

= D

√
k

n

[√
2 log(p− k)− (0.5 + oP(1)) log log(p− k)√

2 log(p− k)

]
− oP(D)

= D

√
2k log(p− k)

n
−D

√
k

n

(0.5 + oP(1)) log log(p− k)√
2 log(p− k)

− oP(D)

By assumption,√
k

n

log log(p− k)√
2 log(p− k)

.
√

log0.99 p · log log(p− k)√
2 log(p− k)

�
√

log0.99 p · log log p√
2 log p

= o(1).

Therefore, we get

max
k+1≤j≤p

∣∣∣X>j (y −Xβ̂)∣∣∣ ≥ D
[√

2k log(p− k)

n
+ oP(1)

]
,

contradicting (A.6). Thus, P(A) = o(1).
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Next, we aim to prove Theorem 1 in the case of forward stepwise. Below are two preparatory
lemmas.

Lemma A.7. Given 1 ≤ m ≤ p, for any subset F ⊂ {1, . . . , p} of cardinality at most m, i /∈ F ,
and j ∈ F , regress Xi on XF and denote by α̂i,Fj the least-squares coefficient of Xj in this fit.
Then, under Assumption 1, with probability approaching one, we have

|α̂i,Fj | ≤
√

5m log p

n

uniformly over all i, j, and F of cardinality at most m.

Lemma A.8. Under Assumption 1, we get

1− 3

√
log p

n
≤ ‖Xi‖ ≤ 1 + 3

√
log p

n
.

with probability approaching one uniformly for all 1 ≤ i ≤ p.

This lemma is a simple consequence of a well-known concentration inequality of the form

P
(∣∣∣∣χ2

n

n
− 1

∣∣∣∣ ≥ t) ≤ 2e−nt
2/8

for all 0 < t < 1. The proof is thus omitted. Now we move to prove Theorem 1 for forward stepwise
regression.

Proof of Theorem 1 in the forward stepwise case. Here, we use the same proof strategy as in the
lasso and least angle regression cases. Define A and X(L) as earlier. To complete the proof, it
suffices to show that P(A)→ 0.

We also assume that forward stepwise is performed on the true support XS . Denote by m∗ the
number of variables selected before X(L), that is, X(L) is selected in the (m∗ + 1)th step. Take
some m satisfying m ≤ pc for some c < 1/3. It is easy to show that m∗ � m with probability
approaching one.

Denote by F ∗ the set of selected variables beforeX(L). On the event A, the definition of forward
stepwise yields

min
supp(b)=F ∗∪(L)

‖y −Xb‖2 ≤ min
supp(b)=F ∗∪l,l∈S

‖y −Xb‖2.

Recall that S = {k + 1, . . . , p} stands for the complement of S. In particular, we have

min
supp(b)=F ∗∪(L)

‖y −Xb‖2 ≤ min
supp(b)=F ∗∪j′

‖y −Xb‖2, (A.7)

where j′ = argmaxj∈S |X>j y|. Let X̃(L) be residual vector by regressing X(L) on XF ∗ . Then,

min
supp(b)=F ∗∪(L)

‖y −Xb‖2 − min
supp(b)=F ∗

‖y −Xb‖2

= −

 X̃>(L)y
‖X̃(L)‖

2

= −

[
(X>(L) −

∑
i∈F ∗ αiX

>
i )y

‖X̃(L)‖

]2
,
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where αi’s are the least-squares coefficients. By Lemma A.7, we get∥∥∥∥∥∑
i∈F ∗

αiX
>
i y

∥∥∥∥∥ ≤ √m∗max
i∈F ∗
‖αiX>i y‖

≤
√
mmax

i∈F ∗
‖αiX>i y‖

≤
√
m

√
5m log p

n
max
i∈F ∗
‖X>i y‖

≤
√

5m2 log p

n
· 2D

√
2k log p

n

= D

√
40m2k log2 p

n2

. D

√
40m2 log2.99 p

n

= o(D),

which makes use of Lemma A.3. Therefore, we get(
X>(L) −

∑
i∈F ∗

αiX
>
i

)
y = X>(L)y + oP(D).

Together with Lemma A.8, the equality above gives[
(X>(L) −

∑
i∈F ∗ αiX

>
i )y

‖X̃(L)‖

]2
≤

[
X>(L)y + oP(D)

‖X(L)‖ −
∑

i∈F ∗ |αi|‖Xi‖

]2

≤

 X>(L)y + oP(D)

1− 3
√

log p
n −m

√
5m log p

n

(
1 + 3

√
log p
n

)

2

= (1 +O(
√
m3n−1 log p))

(
X>(L)y + oP(D)

)2
.

(A.8)

Similarly, we have[
(X>(L) −

∑
i∈F ∗ αiX

>
i )y

‖X̃(L)‖

]2
≥ (1−O(

√
m3n−1 log p))

(
X>(L)y + oP(D)

)2
. (A.9)

For the right-hand side of (A.7), we have

− (1 +O(
√
m3n−1 log p))

(
X>j′y + oP(D)

)2
≤ min

supp(b)=F ∗∪j′
‖y −Xb‖2 − min

supp(b)=F ∗
‖y −Xb‖2

≤ −(1−O(
√
m3n−1 log p))

(
X>j′y + oP(D)

)2
(A.10)
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with probability approaching one. Combining (A.7), (A.8), (A.9), and (A.10) gives

(1 +O(
√
m3n−1 log p))

(
X>(L)y + oP(D)

)2
≥ (1−O(

√
m3n−1 log p))

(
X>j′y + oP(D)

)2
(A.11)

on the event A.
To complete the proof, we shall show that (A.11) holds with probability tending to zero. On

the one hand, from the earlier proof for the case of the lasso, we see that

(1 +O(
√
m3n−1 log p))

(
X>(L)y + oP(D)

)2
≤ (1 +O(

√
m3n−1 log p))D2

[√
2k log(p− k)

n
− c+ oP(1)

]2

= D2

[√
2k log(p− k)

n
− c+ oP(1)

]2
,

which makes use of the fact that O(
√
m3n−1 log p)) ·

√
2k log(p− k)/n = o(1) under our assump-

tions. On the other hand,

(1−O(
√
m3n−1 log p))

(
X>j′y + oP(D)

)2
= (1−O(

√
m3n−1 log p))D2

[√
2k log(p− k)

n
+ oP(1)

]2

= D2

[√
2k log(p− k)

n
+ oP(1)

]2
Hence, (A.11) yields

D2

[√
2k log(p− k)

n
− c+ oP(1)

]2
≥ D2

[√
2k log(p− k)

n
+ oP(1)

]2
,

which is a clear contradiction. Hence, P(A)→ 0.

To conclude this section, we present proofs of Lemma A.1 through Lemma A.7, respectively.

Proof of Lemma A.1. Recall the notation µ = Xβ. We first list some facts that are constantly
used in the proof. First,

‖Xβ‖ = (1 + oP(1))M
√
k.

This is because n‖Xβ‖2/(kM2) is just a χ2 random variable with n degrees of freedom. Thus,
n‖Xβ‖2/(kM2) = (1 + oP(1))n, yielding ‖Xβ‖ = (1 + oP(1))M

√
k. Hence, we get

Γ =
β>X>y√
kM‖y‖

≤ ‖β
>X>‖‖y‖√
kM‖y‖

=
‖Xβ‖√
kM

≤ 1 + oP(1).

Next we turn to prove that Γ ≥ −c. In fact, we have

Γ ≡ ‖µ‖
2 + µ>z√
kM‖y‖

≥ µ>z√
kM‖y‖

. (A.12)
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For ‖y‖, note that

‖y‖ = (1 + oP(1))
√
kM2 + nσ2 ≥ (1 + oP(1))σ

√
n.

And conditional on µ, the numerator µ>z is normally distributed with mean 0 and variance σ2‖µ‖2,
implying

µ>z = OP(σ‖µ‖) = OP(Mσ
√
k).

Combining the results above, particularly (A.12), gives

Γ ≥ (1 + oP(1))
OP(Mσ

√
k)√

kMσ
√
n

= OP(1/
√
n) = oP(1).

Hence, Γ ≥ −c with probability approaching one for an arbitrary constant c > 0.

Proof of Lemma A.3. If βj = 0, then Xj is independent of y. This means conditional on y the
distribution of X>j y is N (0, ‖y‖2/n). Thus,

|X>j y| ≤
‖y‖√
n

√
2 log p = D

√
2k log p

n

with probability at least 1− o(1/p). Taking a union bound yields

max
j /∈S
|X>j y| ≤ D

√
2k log p

n
< 2D

√
2k log p

n

with probability 1− o(1). Now consider a j such that βj 6= 0. Note that

X>j y = X>j Xjβj +X>j (X−jβ−j + z) = MX>j Xj +X>j (X−jβ−j + z). (A.13)

The first term obeys

P
(
|X>j Xj − 1| ≥ t

)
= P

(
|χ2
n/n− 1| ≥ t

)
≤ 2e−nt

2/8

for any 0 < t < 1. Setting t to n−
1
4 gives

max
j
|X>j Xj − 1| = oP(1).

In addition, we have

D

√
2k log p

n
= (1 + oP(1))

√
kM2 + nσ2

k

√
2k log p

n

≥ (1 + oP(1))

√
kM2

k

√
2k log p

n

≥ (1 + oP(1))M

√
2k log p

n
.

Recognizing that
√

2k(log p)/n→∞, we get∣∣∣MX>j Xj

∣∣∣ = (1 + oP(1))M = oP(1) ·D
√

2k log p

n
. (A.14)
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For the second term of (A.13), note that X>j (X−jβ−j +z) is distributed as a centered normal ran-

dom variable with variance ‖X−jβ−j +z‖2/n conditional on X−jβ−j +z, due to the independence
between Xj and X−jβ−j + z. Consequently, |X>j (X−jβ−j + z)| ≤ ‖X−jβ−j + z‖n−1/2

√
2 log p

holds with probability 1− o(1/p), from which we get

max
j
|X>j (X−jβ−j + z)| ≤ (1 + oP(1))

‖X−jβ−j + z‖√
n

√
2 log p = (1 + oP(1))D

√
2k log p

n
,

which makes use of the fact that ‖X−jβ−j + z‖ = (1 + oP(1))
√
kD uniformly for all j. Plugging

the last display and (A.14) into (A.13) gives

max
j∈S
|X>j y| ≤ oP(1)D

√
2k log p

n
+ (1 + oP(1))D

√
2k log p

n
,

which is smaller than 2D
√

2k(log p)/n with probability tending to one.

Proof of Lemma A.4. First, we consider the case where ‖β̂‖0 ≥ 0.25
√
n/ log p. Since

√
k‖β̂S‖0 log p

n
·D ≥

√
k ×

√
n/ log p/4× log p

n
·D

=
1

4

√
k log p

n
·D

(we suppress the dependence of β̂S on λ) and∣∣∣X>j Xβ̂S∣∣∣ ≤ ∣∣∣X>j y∣∣∣+
∣∣∣X>j (y −Xβ̂S)

∣∣∣
≤ 2 max

i

∣∣∣X>i y∣∣∣
≤ 4D

√
2k log p

n

for all j, which makes use of Lemma A.3 (this also follows from (A.17) below). In this case, the
proof is simply as follows:

max
j:β̂S

j (λ)=0

∣∣∣X>j Xβ̂S(λ)
∣∣∣ ≤ max

1≤j≤p

∣∣∣X>j Xβ̂S(λ)
∣∣∣

≤ 4D

√
2k log p

n

= 16
√

2 · 1

4

√
k log p

n
·D

≤ 16
√

2 ·
√
k‖β̂S‖0 log p

n
·D.

Now we move to the case where ‖β̂‖0 ≤
√
n/ log p/4. Recognizing that the number of pairs

1 ≤ i < j ≤ p is p(p− 1)/2, we get

max
1≤i<j≤p

|X>j Xi| ≤ (1 + oP(1))

√
2 log p(p−1)

2

n
= (1 + oP(1))

√
4 log p

n
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under Assumption 1. This result implies∣∣∣X>j Xβ̂S∣∣∣ ≤∑
i

|β̂Si ||X>i Xj |

=
∑
i:β̂S

i 6=0

|β̂Si ||X>i Xj |

≤ (1 + oP(1))
∑
i:β̂S

i 6=0

|β̂Si |
√

4 log p

n

≤ (1 + oP(1))‖β̂S‖0 max
i
|β̂Si |

√
4 log p

n

(A.15)

for all j such that β̂Sj = 0. Let j? be the index that |β̂Sj? | is the largest. Taking

|β̂Sj? | ≤ (8 + oP(1))D

√
2k log p

n
(A.16)

as given for the moment, from (A.15) we get

∣∣∣X>j Xβ̂S∣∣∣ ≤ (1 + oP(1))‖β̂S‖0 max
i
|β̂Si |

√
4 log p

n

≤ (1 + oP(1))‖β̂S‖0 × 8D

√
2k log p

n
×
√

4 log p

n

= (1 + oP(1))16
√

2 ·
√
k‖β̂S‖0 log p

n
·D

Summarizing from the two cases, the lemma holds if we take any constant C > 16
√

2.
The rest of the proof aims to verify (A.16). Note that, on the one hand,

λ =
∣∣∣X>j?(y −Xβ̂S)

∣∣∣
≤ λmax := max

1≤j≤p
|X>j y|

≤ 2D

√
2k log p

n
.

(A.17)
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On the other hand, we have∣∣∣X>j?(y −Xβ̂S)
∣∣∣ ≥ ∣∣∣X>j?Xβ̂S∣∣∣− ∣∣∣X>j?y∣∣∣
≥
∣∣∣X>j?Xβ̂S∣∣∣− max

1≤j≤p
|X>j y|

≥ ‖Xj?‖2|β̂Sj? | −
∑

i 6=j?,β̂S
i 6=0

|β̂Si ||X>i Xj? | − max
1≤j≤p

|X>j y|

≥ ‖Xj?‖2|β̂Sj? | −
∑

i 6=j?,β̂S
i 6=0

(1 + oP(1))

√
4 log p

n
|β̂Si | − max

1≤j≤p
|X>j y|

≥ ‖Xj?‖2|β̂Sj? | −
∑

i 6=j?,β̂S
i 6=0

(1 + oP(1))

√
4 log p

n
|β̂Sj? | − max

1≤j≤p
|X>j y|

≥

[
‖Xj?‖2 − (1 + oP(1))

√
4 log p

n
‖β̂S‖0

]
|β̂Sj? | − max

1≤j≤p
|X>j y|

≥
(

1

2
+ oP(1)

)
|β̂Sj? | − max

1≤j≤p
|X>j y|

Hence, (
1

2
+ oP(1)

)
|β̂Sj? | ≤ 2D

√
2k log p

n
+ max

1≤j≤p
|X>j y| ≤ 4D

√
2k log p

n

with probability tending to one. We see that (A.16) is an immediate consequence.

Proof of Lemma A.6. For the first case, by definition we have

−γ +

√
2k log(k/J)

n
>

√
2k log(p− k)

n
− c

and

−γ +

√
2k log(k/(J + 1))

n
≤
√

2k log(p− k)

n
− c,

where we write J for Jc(γ). These two inequalities are equivalent to

log Jc(γ) < (c− γ)

√
2n log(p− k)

k
− (c− γ)2n

2k
+ log

k

p− k

log(Jc(γ) + 1) ≥ (c− γ)

√
2n log(p− k)

k
− (c− γ)2n

2k
+ log

k

p− k
.

(A.18)

Under Assumption 1, it is easy to check that

(c− γ)

√
2n log(p− k)

k
− (c− γ)2n

2k
+ log

k

p− k

= (1 + o(1))

[
(c− γ)

√
2n log p

k
− (c− γ)2n

2k
+ log

n

2p log p

]
→∞.
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Thus, from (A.18) we get

log Jc(γ) = (1 + o(1))

[
(c− γ)

√
2n log p

k
− (c− γ)2n

2k
+ log

n

2p log p

]
.

The rest two cases follow from similar reasoning and, thus, their proofs are omitted.

Proof of Lemma A.7. Here, the least-squares estimate is

α̂i,F = (X>FXF )−1X>FXi,

which, conditional on XF , is distributed as

N (0, (X>FXF )−1/n).

Denote by Am the event that

max
|F |≤m

‖X>FXF − I‖ ≤
1

2
,

where ‖ · ‖ denotes the matrix spectral norm. Note that we have

P
(

max |α̂i,Fj | ≥
√

5m(log p)/n
)
≤ P(Am) + P

(
max |α̂i,Fj | ≥

√
5m(log p)/n,Am

)
≤ P(Am) +

∑
i/∈F,j∈F,|F |≤m

P
(
|α̂i,Fj | ≥

√
5m(log p)/n,Am

)
≤ P(Am) +

∑
i/∈F,j∈F,|F |≤m

P
(
|α̂i,Fj | ≥

√
5m(log p)/n, ‖X>FXF − I‖ ≤

1

2

)

≤ P(Am) +
∑

i/∈F,j∈F,|F |≤m

P
(
|α̂i,Fj | ≥

√
5m(log p)/n

∣∣∣‖X>FXF − I‖ ≤
1

2

)
,

where the max operator is taken over all triples (i, j, F ) such that |F | ≤ m, i /∈ F , and j ∈ F .
Given ‖X>FXF − I‖ ≤ 1/2, all the eigenvalues of (X>FXF )−1 are upper bounded by 2. Since every
diagonal element of a square matrix is lower bounded by the minimum eigenvalue of the matrix,
all the diagonal elements of (X>FXF )−1 are no greater than 2. As a result,

P
(
|α̂i,Fj | ≥

√
5m(log p)/n

∣∣∣‖X>FXF − I‖ ≤
1

2

)
≤ P

(
|N (0, 1)| ≥

√
5m(log p)/n√

2/n

)
= 2Φ(−

√
2.5m log p).
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Hence,∑
i/∈F,j∈F,|F |≤m

P
(
|α̂i,Fj | ≥

√
5m(log p)/n

∣∣∣‖X>FXF − I‖ ≤
1

2

)
≤

∑
i/∈F,j∈F,|F |≤m

2Φ(−
√

2.5m log p)

≤ pm · p−m+ 1

p− 2m+ 1

(
p

m

)
· 2Φ(−

√
2.5m log p)

≤ pm · p−m+ 1

p− 2m+ 1
pm · 2Φ(−

√
2.5m log p)

≤ pm+O(1)Φ(−
√

2.5m log p)

≤ pm+O(1) 1√
2.5m log p

e−1.25m log p

=
1√

2.5m log p
e−(0.25−o(1))m log p

→ 0.

Together with P(Am)→ 0, which follows from the proof of Theorem 3, the last display gives

P
(

max |α̂i,Fj | ≥
√

5m(log p)/n
)
→ 0.

To see why P(Am) → 0, recognize that the term on the right-hand side of (A.39) is greater than
1/2 under Assumption 1.

A.2 Theorem 2

As earlier in Section A.1, we first state some lemmas before turning to the proof of Theorem 2.

Lemma A.9. Fit the response y on the true support XS using the lasso and denote by β̂S(λ) the
lasso solution. Under Assumption 1, further assume that 0.5 < Γ < 1.1 with probability tending
to one. Then, for an arbitrary constant c > 0, with probability approaching one, all the variables
X(1),X(2), . . . ,X(I−c) enter the model before any of

X(Ic+1),X(Ic+2), . . . ,X(k)

along the lasso path.

Lemma A.10. Under Assumption 1, further assume

σ

M

√
n

k
→ 0.

Then, Γ = 1 + oP(1).

With Lemmas A.9 and A.10 in place, now we give the proof of Theorem 2 where the procedure is
the lasso or least angle regression. Note that for large γ and sufficiently small c, we have Jc(γ) = 0.

Proof of Theorem 2 in the lasso and least angle regression cases. The proof starts by making use
of Lemma A.10, which concludes

1− c ≤ Γ ≤ 1 + c
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with probability tending to one for any constant c > 0. To see this, note that Assumption 1 along
ensures

√
n/k ≤ 1/

√
c4 = O(1) and, as a result, we get

σ

M

√
n

k
→ 0

given the condition that σ/M → 0.
As in the proof of Theorem 1, here it also suffices to only focus on the lasso case. Consider

fitting the lasso on XS . Denote by X(I�) the last variable among X(1),X(2), . . . ,X(I−c) that enters
the model and let λ� be the lasso penalty when X(I�) is just about to enter the lasso path. Note

that β̂S(I�)(λ
�) = 0 and I−c = I−c(Γ). The KKT conditions give∣∣∣X>(I�) (y −Xβ̂S)∣∣∣ = λ�. (A.19)

Note that

X>(I�)y ≥X
>
(I−c)

y = D

[
Γ +

√
2k log(k/(I−c))

n
+ oP(1)− ξ

D

]

= D

[
Γ +

√
2k log(k/(I−c))

n
+ oP(1)

]

= D

[√
2k log(p− k)

n
+ c+ oP(1) + oP(1)

]

= D

[√
2k log(p− k)

n
+ c+ oP(1)

]
.

(A.20)

From Lemma A.9 we see that, with probability approaching one, by the time of λ� none of the
variables X(Ic+1),X(Ic+2), . . . ,X(k) has been included in the lasso path. Hence, the lasso model
consists of no more than Ic variables at any time before λ�, and it is easy to check that

‖β̂S(λ)‖0 ≤ Ic(Γ) ≤ oP
(

n√
k log p

)
for all λ > λ�. Consequently, we get

C
√
k‖β̂S(λ)‖0 log p

n
→ 0

uniformly for all λ > λ�. Thus, Lemma A.4 shows |X>(I�)Xβ̂
S | = oP(D). Hence, taking (A.19) and

(A.20) together shows that λ� obeys

λ� ≥ D

[√
2k log(p− k)

n
+ c+ oP(1)

]
. (A.21)

(Similarly, given a small Ic, Theorem 3 ensures that by that time no drop-out has ever happened
and, consequently, the lasso and least angle regression are equivalent in our discussion.) If we can
show that ∣∣∣X>j (y −Xβ̂S(λ)

)∣∣∣ < λ (A.22)
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for all λ > λ� and all j /∈ S, then the full lasso (on X) selects variables only from XS before time
λ�. Call this event B. Thus, on B the first I−c selected variables along the lasso path are all signal
variables. As for I−c, Lemma A.6 yields

log T ≥ log(I−c(Γ) + 1)

= (1 + oP(1))

[
(−c+ Γ)

√
2n log(p− k)

k
− (−c+ Γ)2n

2k
+ log

n

2p log p

]
.

Provided 1− c ≤ Γ ≤ 1 + c with probability tending to one, we get

(−c+ Γ)

√
2n log(p− k)

k
− (−c+ Γ)2n

2k
≥ (1− 2c)

√
2n log(p− k)

k
− (1− 2c)2n

2k
.

Hence, we have

log T ≥ (1 + oP(1))

[
(1− 2c)

√
2n log(p− k)

k
− (1− 2c)2n

2k
+ log

n

2p log p

]

for all constant c > 0. Setting c→ 0+ gives

log T ≥ (1 + oP(1))

[√
2n log(p− k)

k
− n

2k
+ log

n

2p log p

]

= (1 + oP(1))

[√
2n log p

k
− n

2k
+ log

n

2p log p

]
,

as desired.
Establishing (A.22) is the subject of the remaining proof. That is, prove P(B)→ 1. For j /∈ S,

observe that ∣∣∣X>j (y −Xβ̂S)∣∣∣ ≤ |X>j y|+ |X>j Xβ̂S |. (A.23)

Making use of the independence between y and Xj , the first term X>j y obeys

max
j /∈S
|X>j y| ≤ ‖y‖

√
2 log(p− k)

n

with probability approaching one. The second term, |X>j Xβ̂S |, as shown earlier by Lemma A.4,
satisfies that

max
j /∈S,λ>λ�

|X>j Xβ̂S(λ)| ≤ C
√
k‖β̂S‖0 log p

n
·D = oP(D)
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with probability tending to one. Hence, (A.23) yields∣∣∣X>j (y −Xβ̂S)∣∣∣ ≤ ‖y‖
√

2 log(p− k)

n
+ oP(D)

= D

√
2k log(p− k)

n
+ oP(D)

= D

[√
2k log(p− k)

n
+ oP(1)

]

< D

[√
2k log(p− k)

n
+ c+ oP(1)

]
≤ λ�

< λ,

where the second last inequality follows from (A.21). Therefore, P(B)→ 1.

Next, we turn to prove Theorem 2 in the case of forward stepwise regression.

Lemma A.11. Fit the response y on the true support XS using forward stepwise. Under Assump-
tion 1, further assume that 0.5 < Γ < 1.1 with probability tending to one. Then, for an arbitrary
constant c > 0, with probability approaching one, all the variables X(1),X(2), . . . ,X(I−2c) enter the
model before any of

X(I−c+1),X(I−c+2), . . . ,X(k)

by forward stepwise.

Proof of Theorem 2 in the forward stepwise case. Consider running forward stepwise on the design
matrix XS . Denote by XI� the last variable among X(1), . . . ,X(I−2c) that gets selected. Let m?−1
be the number of variables selected prior to X(I�). From Lemma A.11 we see that, with probability
approaching to one, by then none of X(I−c+1), . . . ,X(k) has been selected, that is, m? ≤ I−c. The
proof would be completed once we show that by then no noise variables would be selected if we
perform forward stepwise on X instead of XS .

Denote by Fm the set of variables selected in the first m steps. We would like to show that

min
supp(b)=Fm

‖y −Xb‖2 ≤ min
supp(b)=Fm−1∪l,l∈S

‖y −Xb‖2 (A.24)

for all m ≤ m?. Denote by X(jm) the variable selected in the mth step. To this end, note that from

the proof of Theorem 1 for the forward stepwise case, we see that for any fixed l ∈ S,

min
supp(b)=Fm−1∪l

‖y −Xb‖2 − min
supp(b)=Fm

‖y −Xb‖2

= (X>(jm)y + oP(D))2 − (X>l y + oP(D))2.

Note that since l ∈ S, we have |X>l y| ≤ D(
√

2k log(p− k)/n+ oP(1)), and since 1 ≤ jm ≤ I−c, we
get

X>(jm)y ≥X
>
(I−c)

y = D

[√
2k log(p− k)

n
+ c+ oP(1)

]
.
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An immediate consequence is the following:

min
supp(b)=Fm−1∪l

‖y −Xb‖2 − min
supp(b)=Fm

‖y −Xb‖2

≥ D2

[√
2k log(p− k)

n
+ c+ oP(1)

]2
−D2

[√
2k log(p− k)

n
+ oP(1)

]2
> 0,

which certifies (A.24) provided the arbitrariness of l ∈ S. Therefore, with probability approaching
one, we get

log T ≥ log(I−2c(Γ) + 1).

Setting c→ 0+ completes the proof. Details are the same as the proof for the case of the lasso and
least angle regression.

To conclude this section, we prove Lemmas A.9, A.10, and A.11.

Proof of Lemma A.9. Consider the first time along the lasso path that a variable amongX(Ic+1),X(Ic+2), . . . ,X(k)

is just about to enter the lasso model and denote by X(L) this variable, where Ic + 1 ≤ L ≤ k.
Specifically, writing λ∗ for the lasso penalty at this point, we know that

β̂(L)(λ
∗) = 0

and
β̂(L)(λ) 6= 0

if λ∗ − c′ < λ < λ∗ for some c′ > 0. For a proof of this lemma by contradiction, assume that X(l)

has not yet entered the model at λ∗ for some l satisfying 1 ≤ l ≤ I−c. Under this assumption, our
discussion below considers the lasso solution β̂ at λ∗. First of all, the KKT conditions of the lasso
give ∣∣∣X>(l) (y −Xβ̂)∣∣∣ ≤ λ∗, ∣∣∣X>(L) (y −Xβ̂)∣∣∣ = λ∗.

Consequently, ∣∣∣X>(l) (y −Xβ̂)∣∣∣ ≤ ∣∣∣X>(L) (y −Xβ̂)∣∣∣ . (A.25)

Thus, the proof of the present lemma would be finished if we show that, with probability tending
to one, (A.25) cannot be satisfied.

The rest part of the proof is devoted to disproving (A.25). Note that X>(l)y satisfies

X>(l)y ≥X
>
(I−c)

y = D

[
Γ +

√
2k log(k/I−c)

n
+ oP(1)− ξ

D

]

= D

[
Γ +

√
2k log(k/I−c)

n
+ oP(1)

]

= D

[√
2k log(p− k)

n
+ oP(1)

]
,
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which, together with Lemma A.3, implies that

∣∣∣X>(l) (y −Xβ̂)∣∣∣ ≥ D
[√

2k log(p− k)

n
+ oP(1)− |X>(l)Xβ̂|/D

]

= D

[√
2k log(p− k)

n
+ oP(1)

]
.

(A.26)

Similarly, from Ic + 1 ≤ L ≤ k we get

X>(Ic+1)y ≥X
>
(L)y ≥X

>
(k)y. (A.27)

The quantities appearing on the left- and right-hand sides obey, respectively,

X>(Ic+1)y = D

[√
2k log(p− k)

n
− c+ oP(1)

]

and

X>(k)y = −D

[√
2k log(p− k)

n
− Γ + oP(1)

]
.

Hence, from (A.27) it follows that

D

[√
2k log(p− k)

n
− c+ oP(1)

]
≥X>(L)y ≥ −D

[√
2k log(p− k)

n
− Γ + oP(1)

]
,

yielding ∣∣∣X>(L) (y −Xβ̂)∣∣∣ ≤ D
[√

2k log(p− k)

n
− c+ oP(1) + |X>(L)Xβ̂|/D

]

= D

[√
2k log(p− k)

n
− c+ oP(1)

] (A.28)

Last, combining (A.26) and (A.28) shows that, with probability tending to one, (A.25) cannot
be satisfied, as desired.

Proof of Lemma A.10. Recall that the definition

Γ =
(Xβ)>y√
kM‖y‖

.

Observing that ‖y‖ = (1 + oP(1))
√
kM2 + nσ2, we get

Γ =
(Xβ)>y√

kM(1 + oP(1))
√
kM2 + nσ2

= (1 + oP(1))

〈
Xβ√
kM

,
y√

kM2 + nσ2

〉
.
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Hence, the present lemma is equivalent to〈
Xβ√
kM

,
y√

kM2 + nσ2

〉
= 1 + oP(1), (A.29)

where 〈, 〉 denotes the usual inter product of vectors. Since

Xβ√
kM

and
y√

kM2 + nσ2

are vectors of unit norm asymptotically, (A.29) boils down to claiming that the angle between the
two vectors are asymptotically zero. Recognizing that Xβ and z are asymptotically orthogonal
since they are independent high-dimensional normal vectors, a vanishing angle between Xβ and
y = Xβ + z is equivalent to

‖z‖
‖Xβ‖

→ 0.

The display above is a direct consequence of the condition
√
nσ√
kM

→ 0,

which is provided in the assumptions. Hence, (A.29) holds.

Proof of Lemma A.11. Consider the first time a variable among X(I−c+1), . . . ,X(k) enters the
model. Denote by m� the rank of this variable. As earlier, call this variable X(jm� ). Note that, by
definition, I−c + 1 ≤ jm� ≤ k. Suppose on the contrary that by the time X(jm� ) is selected, at least
one variable among X(1), . . . ,X(I−2c), say X(l), has not been included. Denote by C this event, on
which we must have

min
supp(b)=Fm�

‖y −Xb‖2 ≤ min
supp(b)=Fm�−1∪(l)

‖y −Xb‖2. (A.30)

From the proof of Theorem 1 for the forward stepwise case, we know that

min
supp(b)=Fm�−1∪(l)

‖y −Xb‖2 − min
supp(b)=F �m

‖y −Xb‖2

= (X>(jm� )y + oP(D))2 − (X>(l)y + oP(D))2.
(A.31)

Since jm� ≥ I−c + 1, we get

X>(jm� )y ≤X
>
(I−c)

y = D

[√
2k log(p− k)

n
+ c+ oP(1)

]
, (A.32)

and from jm� ≤ k we get

X>(jm� )y ≥X
>
(k)y

= D

[
Γ−

√
2k log k

n
+ oP(1)

]

> −D

[√
2k log(p− k)

n
+ c+ oP(1)

]
,

(A.33)
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which makes use of the fact that 0.5 < Γ < 1.1. Similarly, we have

X>(l)y ≥X
>
(I−2c)

y ≥ D

[√
2k log(p− k)

n
+ 2c+ oP(1)

]
. (A.34)

Plugging (A.32), (A.33), and (A.34) into (A.31) yields

min
supp(b)=Fm�−1∪(l)

‖y −Xb‖2 − min
supp(b)=F �m

‖y −Xb‖2

≤ D2

[√
2k log(p− k)

n
+ c+ oP(1)

]2
−D2

[√
2k log(p− k)

n
+ 2c+ oP(1)

]2
< 0,

which contradicts (A.30). This implies the event C happens with probability vanishing to zero.

A.3 Theorem 3

Proof of Theorem 3. Write

m = min
{⌈
c
√
n/ log p

⌉
, p
}

for some constant c to be determined later. A variable might be dropped by the lasso only if its
fitted coefficient crosses zero. By using this fact, it suffices to show that the fitted coefficients of
the selected variables shall never cross zero in the first m selected variables, except for a rare event
with probability no more than 1/p2.

Let λ′ be the first time along the lasso path a previously selected variable is just about to drop
out of the model. (The proof shall only focus on the event that such λ′ exists; otherwise no variable
drops out.) Denote by j the number of variables selected just before the first dropout and Ŝ the
set of these j variables. For the sake of contradiction, assume that j ≤ m− 1.

Pick an λ that is (slightly) smaller than λ′ and at which j variables have been included in the
model. Observe the following partial KKT condition for the lasso solution:

−X>
Ŝ

(y −X
Ŝ
β̂
Ŝ

) + λ sgn(β̂
Ŝ

) = 0. (A.35)

In a componentwise manner, sgn(·) above returns 1 if the corresponding component is positive and
−1 if negative. From (A.35) it follows that

β̂
Ŝ

(λ) = (X>
Ŝ
X
Ŝ

)−1X>
Ŝ
y − λ(X>

Ŝ
X
Ŝ

)−1 sgn(β̂
Ŝ

(λ)).

Now let us gradually decrease λ to λ′, moving along the lasso path. If (X>
Ŝ
X
Ŝ

)−1 sgn(β̂
Ŝ

) has the

same sign as sgn(β̂
Ŝ

) across all |Ŝ| = j coordinates, then in this process of moving λ down to λ′,

we see all positive coefficients of β̂(λ) get larger while all negative coefficients become even smaller.
This implies that no coefficient will cross zero, a contradiction to the assumption. Therefore,
(X>

Ŝ
X
Ŝ

)−1 sgn(β̂
Ŝ

) differs from sgn(β̂
Ŝ

) in the sign of at least one coordinate, yielding∥∥∥(X>
Ŝ
X
Ŝ

)−1 sgn(β̂
Ŝ

)− sgn(β̂
Ŝ

)
∥∥∥ ≥ 1. (A.36)
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On the other hand, we have∥∥∥(X>
Ŝ
X
Ŝ

)−1 sgn(β̂
Ŝ

)− sgn(β̂
Ŝ

)
∥∥∥ ≤ ∥∥∥(X>

Ŝ
X
Ŝ

)−1 − I
∥∥∥∥∥∥sgn(β̂

Ŝ
)
∥∥∥

≤
∥∥∥(X>

Ŝ
X
Ŝ

)−1 − I
∥∥∥√m− 1

≤
∥∥∥X>

Ŝ
X
Ŝ
− I

∥∥∥∥∥∥(X>
Ŝ
X
Ŝ

)−1
∥∥∥√m− 1.

(A.37)

Let θ ∈ (0, 1) be the restricted isometry constant for (m−1)-sparse vectors, which is defined as the
smallest θ such that

(1− θ)‖b‖2 ≤ ‖Xb‖2 ≤ (1 + θ)‖b‖2

for all (m − 1)-sparse b ∈ Rp (we use the notation θ instead of the conventional δ since the latter
has been reserved for denoting the ratio n/p). It is not hard to see that this definition yields the
following more amenable expression

θ = max
|U |≤m−1

‖X>UXU − I‖, (A.38)

where the maximum is taken over all subsets of {1, 2, . . . , p} with cardinality smaller than m and
X>U denotes (XU )>. In the case where m ≥ 2 (if m = 1 then this theorem is trivially true), a well
known result regarding this constant states

θ ≤ C
√

(m− 1) log(p/(m− 1))

n
(A.39)

with probability at least 1 − 1/p2, where C > 0 is a universal constant (see, e.g., Theorem 5.2 in
Baraniuk et al. (2008); note that θ is random due to its dependence on X).

Now we prove that on the event (A.39), the assumption j ≤ m− 1 cannot hold with a suitable
of the constant c. To this end, we start by observing that (A.38) together with the assumption
|Ŝ| = j ≤ m− 1 ensures that all the eigenvalues of X>

Ŝ
X
Ŝ

are between 1− θ and 1 + θ. Thus, from

(A.37) we get∥∥∥(X>
Ŝ
X
Ŝ

)−1 sgn(β̂
Ŝ

)− sgn(β̂
Ŝ

)
∥∥∥ ≤ ∥∥∥X>

Ŝ
X
Ŝ
− I

∥∥∥∥∥∥(X>
Ŝ
X
Ŝ

)−1
∥∥∥√m− 1

≤ θ

1− θ
√
m− 1,

Substituting (A.36) into the above display, under the assumption that j ≤ m− 1 we see that

C

√
(m−1) log(p/(m−1))

n

1− C
√

(m−1) log(p/(m−1))
n

·
√
m− 1 ≥ θ

1− θ
√
m− 1 ≥ 1 (A.40)

holds on the event (A.39). If we can show that

C

√
(m−1) log(p/(m−1))

n

1− C
√

(m−1) log(p/(m−1))
n

·
√
m− 1 < 1, (A.41)
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meaning that (A.40) cannot be satisfied, then the assumption that j ≤ m − 1 must be violated
and, consequently, the first m variables are included along the lasso path without any drop-out
with probability at least 1 − 1/p2 (note that the event (A.39) happens with probability at least
1− 1/p2). Indeed, (A.41) is true if we set (note that we have excluded the trivial case n < log p)

c = min

{
1,

1

4C2
,

1

2C

}
.

This concludes the proof.

A.4 Proposition 4.1

Proof of Proposition 4.1. Note that the least-squares estimator takes the form:

β̂LS = (X>X)−1X>y

= β + (X>X)−1X>z,

which is, conditional on X, distributed as

β̂LSj

σ
√

[(X>X)−1]jj
∼ N (0, 1)

for all j /∈ S and

β̂LSj

σ
√

[(X>X)−1]jj
∼ N (µj , 1)

for j ∈ S. Above,

µj =
M

σ
√

[(X>X)−1]jj
.

Take the following result as given for the moment:

max
1≤j≤p

[
(X>X)−1

]
jj
≤ n

n− p
+ c (A.42)

with probability approaching one for an arbitrary constant c > 0. Then, we can show that

min
j∈S

∣∣∣∣∣ β̂LSj

σ
√

[(X>X)−1]jj

∣∣∣∣∣ > max
j /∈S

∣∣∣∣∣ β̂LSj

σ
√

[(X>X)−1]jj

∣∣∣∣∣ . (A.43)

To see this, note that

min
j∈S

∣∣∣∣∣ β̂LSj

σ
√

[(X>X)−1]jj

∣∣∣∣∣ ≥ min
j∈S

M

σ
√

[(X>X)−1]jj
−
√

2 log k

and

max
j /∈S

∣∣∣∣∣ β̂LSj

σ
√

[(X>X)−1]jj

∣∣∣∣∣ ≤√2 log(p− k)
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with probability approaching one. Hence, (A.43) follows if one can show that

min
j∈S

M

σ
√

[(X>X)−1]jj
−
√

2 log k −
√

2 log(p− k) > 0.

In fact, from (A.42) we have

min
j∈S

M

σ
√

[(X>X)−1]jj
−
√

2 log k −
√

2 log(p− k)

> min
j∈S

M

σ
√

[(X>X)−1]jj
− 2
√

2 log p

≥ M

σ
√

n
n−p + c

− 2
√

2 log p

≥ M

σ
√

δ
δ−1 + c

− 2
√

2 log p

≥
3
√

2δ log p
δ−1√

δ
δ−1 + c

− 2
√

2 log p

= 3
√

2 log p ·

√
δ/(δ − 1)

δ/(δ − 1) + c
− 2
√

2 log p,

which is positive by setting c sufficiently small. Above, recall that δ = n/p. Hence, (A.43) holds,
meaning that all the true variables are vertically ranked higher than any of the false variables. In
particular, the first false variable is vertically ranked lower than all of the true variables.

In the remaining part of the proof, our aim is to prove (A.42). Write the singular value decom-
position of X as

X = UDV >,

where U ∈ Rn×n and V ∈ Rp×p are orthogonal matrices, and D ∈ Rn×p is diagonal. Then, the
left-hand side of (A.42) can be expressed as[

(X>X)−1
]
jj

= e>j V (D>D)−1V >ej ,

where ej denotes the jth canonical basis vector in Euclidean space. Using this fact, we get

P
(

max
1≤j≤p

[
(X>X)−1

]
jj
≥ n

n− p
+ c

)
= P

(
max
1≤j≤p

e>j V (D>D)−1V >ej ≥
n

n− p
+ c

)
= EP

(
max
1≤j≤p

e>j V (D>D)−1V >ej ≥
n

n− p
+ c
∣∣∣D)

≤ Emin


p∑
j=1

P
(

e>j V (D>D)−1V >ej ≥
n

n− p
+ c
∣∣∣D) , 1


= Emin

{
pP
(

e>1 V (D>D)−1V >e1 ≥
n

n− p
+ c
∣∣∣D) , 1} ,
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where the last step makes use of the exchangeability of V >e1, . . . ,V
>ep givenD. Therefore, writing

η = V >e1, it suffices to prove that

Emin

{
pP
(
η>(D>D)−1η ≥ n

n− p
+ c
∣∣∣D) , 1}→ 0.

Recognizing that X has independent N (0, 1/n) entries, it is known that η is independent of
D and is uniformly distributed on the unit sphere in Rp. In particular, η assumes the following
representation

η =
(ζ1, . . . , ζp)

>√
ζ21 + · · ·+ ζ2p

=
ζ√

ζ21 + · · ·+ ζ2p

,

where ζ1, . . . , ζp are independent N (0, 1) random variables. Using this representation, we get

P
(
η>(D>D)−1η ≥ n

n− p
+ c
∣∣∣D)

= P

(
ζ>(D>D)−1ζ ≥ ‖ζ‖2

(
n

n− p
+ c

) ∣∣∣∣∣D
)

≤ P

(
ζ>(D>D)−1ζ ≥ (p− p0.75)

(
n

n− p
+ c

) ∣∣∣∣∣D
)

+ P(‖ζ‖2 ≤ p− p0.75).

(A.44)

Setting t =
√
p, Assumption 1 ensures that the following inequality must eventually hold:

(p− p0.75)
(

n

n− p
+ c

)
≥ p

(
n

n− p
+
c

2

)
+ (2
√
pt+ 2t)×

(
δ

(
√
δ − 1)2

+ c

)
.

Plugging the display above into (A.44) gives

P
(
η>(D>D)−1η ≥ n

n− p
+ c
∣∣∣D)

≤ P

(
ζ>(D>D)−1ζ ≥ p

(
n

n− p
+
c

2

)
+ (2
√
pt+ 2t)×

(
δ

(
√
δ − 1)2

+ c

) ∣∣∣∣∣D
)

+ P(‖ζ‖2 ≤ p− p0.75).

Next, denote by

A =

{
tr((D>D)−1) ≥ p

(
n

n− p
+
c

2

)
or ‖(D>D)−1‖ > δ

(
√
δ − 1)2

+ c

}
and write 1A for the indicator function of A defined as

1A :=

{
1 if the event A holds,

0 otherwise.

Then, it is easy to see that

P

(
ζ>(D>D)−1ζ ≥ p

(
n

n− p
+
c

2

)
+ (2
√
pt+ 2t)×

(
δ

(
√
δ − 1)2

+ c

) ∣∣∣∣∣D
)

≤ 1A + P

(
ζ>(D>D)−1ζ ≥ tr((D>D)−1) + (2

√
pt+ 2t)‖(D>D)−1‖

∣∣∣∣∣D
)

≤ 1A + e−t,
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where the last step follows from a Gaussian concentration inequality (see, for example, Hsu et al.
(2012)). As a result, it suffices to show that

Emin
{
p1A + pe−t + pP(‖ζ‖2 ≤ p− p0.75), 1

}
→ 0.

To this end, first note that from

1

(1−
√
p/n)2

+ c <
δ

(
√
δ − 1)2

+ c

we get

P
(
‖(D>D)−1‖ > δ

(
√
δ − 1)2

+ c

)
≤ P

(
‖(D>D)−1‖ > 1

(1−
√
p/n)2

+ c

)
→ 0, (A.45)

where we use the fact that the smallest singular value of the Wishart matrix X>X is concentrated
at (1−

√
p/n)2 with probability tending to one (see, for example, Vershynin (2012)). Second, it is

known that
tr((D>D)−1) = (1 + oP(1))

np

n− p
,

which implies

P
(

tr((D>D)−1) ≥ p
(

n

n− p
+
c

2

))
→ 0. (A.46)

Taking (A.45) and (A.46) together, we get

P(A)→ 0. (A.47)

Recognizing that t =
√
p, we get pe−t → 0. In addition, pP(‖ζ‖2 ≤ p − p0.75) → 0. Hence, from

(A.47) we have
min

{
p1A + pe−t + pP(‖ζ‖2 ≤ p− p0.75), 1

}
→ 0

in probability. In addition, note that

min
{
p1A + pe−t + pP(‖ζ‖2 ≤ p− p0.75), 1

}
is upper bounded by 1, which is an integrable function. Hence, by the dominated convergence
theorem, we get

Emin
{
p1A + pe−t + pP(‖ζ‖2 ≤ p− p0.75), 1

}
→ 0,

as desired.
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