
The FDR-Linking Theorem

Weijie J. Su∗

December 21, 2018

Abstract

This paper introduces the FDR-linking theorem, a novel technique for understand-
ing non-asymptotic FDR control of the Benjamini–Hochberg (BH) procedure under
arbitrary dependence of the p-values. This theorem offers a principled and flexible ap-
proach to linking all p-values and the null p-values from the FDR control perspective,
suggesting a profound implication that, to a large extent, the FDR of the BH procedure
relies mostly on the null p-values. To illustrate the use of this theorem, we propose a new
type of dependence only concerning the null p-values, which, while strictly relaxing the
state-of-the-art PRDS dependence (Benjamini and Yekutieli, 2001), ensures the FDR
of the BH procedure below a level that is independent of the number of hypotheses.
This level is, furthermore, shown to be optimal under this new dependence structure.
Next, we present a concept referred to as FDR consistency that is weaker but more
amenable than FDR control, and the FDR-linking theorem shows that FDR consis-
tency is completely determined by the joint distribution of the null p-values, thereby
reducing the analysis of this new concept to the global null case. Finally, this theorem
is used to obtain a sharp FDR bound under arbitrary dependence, which improves the
log-correction FDR bound (Benjamini and Yekutieli, 2001) in certain regimes.

Keywords: False discovery rate (FDR), Benjamini–Hochberg procedure, FDR-linking 
theorem, positive regression dependence within nulls (PRDN), FDR consistency, Simes 
method, compliance, Bonferroni-masked adversary

1 Introduction

In 1995, Benjamini and Hochberg introduced a new procedure, henceforth referred to as 
the BH procedure, to control a type I error called the false discovery rate (FDR) in large-
scale multiple testing problems [BH95]. To describe their procedure, order the n observed

p-values p1, . . . , pn from the most significant to the least as p(1) ≤ · · · ≤ p(n). Taking 
0 < α < 1 as the nominal level throughout the paper, the BH procedure finds R that is the
last time p(j) is below the critical value αj/n, that is,

R = max
{

1 ≤ j ≤ n : p(j) ≤ αj/n
}
,

with the convention max ∅ = 0. The BH procedure rejects the R hypotheses with their
corresponding p-values pj ≤ αR/n. Letting V denote the number of falsely rejected null
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p-values1, [BH95] proves that their procedure controls the FDR in the sense that

FDR := E
[

V

max{R, 1}

]
≤ α

under independence of the p-values2.
After two decades of vigorous development, today the BH procedure and many of its

variants have been extensively applied in high-throughput sciences such as genomics, where
the FDR is increasingly recognized as the right error rate to control when simultaneously
testing tens of thousands of, for example, gene expression levels (see [TTC01, GLN02, ST03]
for exemplary applications and [Ben10] for a review of the FDR concept).

In stark contrast to the enormous popularity of the FDR criterion and methodologies,
however, it is generally unclear whether the BH procedure controls the FDR given a joint
distribution of the p-values, though there are continued efforts to bridge this unsettling gap.
To put it into perspective, the BH procedure has been proved to control the FDR under
independence [BH95] or certain positive dependence [BY01] of the p-values. Surprisingly,
no dependence structure is known to yield meaningful (non-asymptotic) FDR control while
also being conceptually different from the two rather stringent dependence structures. That
said, there is a long line of work concerning asymptotic FDR control of the BH procedure
under various dependence assumptions (see Section 1.4 for literature review).

This paper considers non-asymptotic FDR control of the BH procedure under depen-
dence of the p-values. Roughly speaking, our approach begins by decomposing the full
dependence structure into the null dependence (joint distribution of the null p-values) and
the null-non-null dependence (conditional distribution of the non-null p-values given the
null p-values). One might imagine that each of the two distributions would have an arbi-
trarily large effect on the FDR. This is, surprisingly, not true. As shown next, our main
finding is that the FDR of the BH procedure admits an upper bound that is determined
only by the null dependence.

To state our main theorem, let π0 := n0/n denote the true null proportion, where n0 is
the number of null p-values. For any 0 < x < 1, write FDR0(x) for the false discovery rate
of the BH procedure at level x supplied with the null p-values3. As such, the FDR0(x) is
entirely determined by the null dependence.

Theorem 1 (The FDR-linking theorem). Under arbitrary dependence of the p-values, the
FDR of the BH procedure at level α satisfies

FDR ≤ π0α+ π0α

∫ 1

π0α

FDR0(x)

x2
dx. (1.1)

This theorem makes a link from the nulls to the full set of the p-values from the FDR
control standpoint, hence the name the FDR-linking theorem. As an attractive feature,

1A p-value is null if its null hypothesis is true, in which case the p-value is stochastically larger than or
equal to the uniform variable on (0, 1).

2Formally, [BH95] requires that (1) the null p-values are jointly independent (2) and, furthermore, are
independent of the non-null p-values. The bound can be strengthened to FDR ≤ π0α [BH95].

3To clear up any confusion, we remark that the BH procedure applied to the nulls uses the critical values
xj/n0 for j = 1, . . . , n0.
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Theorem 1 holds unconditionally, without requiring any distributional assumptions of the
p-values. The FDR bound in the FDR-link inequality (1.1) is a non-decreasing function of
π0α (see Proposition 2.2 in Section 2.1) and, therefore, a slightly weaker but simpler form
of this result is

FDR ≤ α+ α

∫ 1

α

FDR0(x)

x2
dx.

As a useful fact, FDR0(x) is just the type I error of the Simes method [Sim86] at level x on
the nulls (see Lemma 2.1 in Section 2.1).

Importantly, Theorem 1 implies that the null dependence is central to FDR control
of the BH procedure. To illustrate this point, recognize that while the FDR presumably
depends on both the null dependence and the null-non-null dependence, the upper bound
in (1.1) is solely determined by the null dependence, no matter how adversarial/unfavorable
the dependence between the nulls and non-nulls is for FDR control. Put differently, the
non-null p-values have a bounded effect on the FDR as opposed to the profound effect of
the null p-values. Indeed, the nulls in the worst case (FDR0(x) = 1) would turn the FDR
bound in (1.1) into

π0α+ π0α

∫ 1

π0α

1

x2
dx = 1,

which is possibly the largest and least useful (see Section 4 for the feasibility of FDR0(x) =
1).

The FDR bound in Theorem 1 is optimal for certain null dependence in the sense that
(1.1) can reduce to an equality (see Theorem 4). To obtain an upper bound on the FDR,
therefore, the FDR-linking theorem suggests focusing on FDR0(x) on the nulls, at least as
a worthwhile starting point. This flexibility is particularly useful in the case where the null
dependence can be proven to yield a small value of FDR0(x), which will be demonstrated
through two applications of this theorem in Section 1.1 and Section 1.2, respectively.

For completeness, Theorem 1 holds for all compliant procedures. In [DSZ18], a multiple
testing procedure is said to be compliant at level α if, denoting byR the number of rejections,
every rejected p-value pj satisfies

pj ≤
αR

n
.

This condition is a special instance of the self-consistency condition first proposed in [BR08],
where the threshold αR/n is replaced by a general function of R and prior information
about hypotheses. As is clear, compliant procedures include the step-down BH procedure,
the generalized step-up-step-down procedures [TLD98, Sar02] and, importantly, the (step-
up, the one in Theorem 1) BH procedure, which is the most powerful in this family of
procedures in the sense that the rejection set of any compliant procedure is a subset of
that of the BH procedure. That said, although being the most powerful, the BH procedure
in general does not maximize the FDR among compliant procedures (see discussion in
Section 2.2). Interestingly, compliant procedures maintain the FDR-linking property as
shown in Theorem 2, of which Theorem 1 is a corollary.

Theorem 2 (The FDR-linking theorem for compliant procedures). Theorem 1 holds for
any compliant procedures.
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To avoid any confusion, the FDR in (1.1) in the context of Theorem 2 corresponds to
the compliant procedure at level α, while the FDR0(x) is for the BH procedure supplied
with the nulls.

1.1 Application: FDR control under a new condition

As noted earlier, the BH procedure ensures FDR ≤ α if the null p-values exhibit certain pos-
itive dependence and, furthermore, are positively dependent on the non-null p-values[BY01].
This type of dependence of the p-values is referred to as the positive regression dependence
on a subset property, or PRDS for short. To formally define this property, let N0 denote
the set of nulls and call D ⊂ [0, 1]n an increasing set if x ∈ D and x � y � 1 (in the
coordinate-wise sense) together imply y ∈ D.

Definition 1.1 (PRDS4, [BY01]). A set of p-values (p1, . . . , pn) is said to satisfy the PRDS
property, if for any increasing set D ⊂ [0, 1]n and each null index i ∈ N0, the probability
P((p1, . . . , pn) ∈ D|pi ≤ t) is non-decreasing in t ∈ (0, 1].

In relating to the literature, this property is implied by a condition termed the multivari-
ate total positivity of order 2 (MTP2) [KR80]. The PRDS property is perhaps the most pop-
ular condition used for proof of FDR control of BH-type procedures (see, for example, the use
of PRDS in super-uniformity lemmas for proving FDR control [BR08, BR17, RBWJ17]).
Although having relaxed the independence assumption in [BH95], the PRDS remains to
assume certain positive dependence between the nulls and non-nulls. This feature is unde-
sirable because, while some information of the null distribution is often available in appli-
cations, we typically lack knowledge of how the non-nulls depend on the nulls.

Going back to the FDR-linking theorem, however, we learn that the FDR of any com-
pliant procedure is largely contingent upon the null dependence. In this spirit, we ask if
the PRDS property can be replaced by a more general condition. To address this need, we
propose the following definition for FDR control, where, for convenience, a set of p-values
is said to satisfy the PRD property if all p-values are null and obey the PRDS property.

Definition 1.2 (PRDN). A set of p-values is said to satisfy the positive regression depen-
dence within nulls (PRDN) if the set of all null p-values satisfies the PRD property.

Put differently, the PRDN property boils down to the monotone non-decreasing of
P(pN0 ∈ DN0 |pi ≤ t) as a function t ∈ (0, 1] for any i ∈ N0 and any increasing subset
DN0 ⊂ [0, 1]|N0|. Implied by the PRDS property, this new property imposes distributional
assumptions only on the null p-values. As such, the null-non-null dependence can be arbi-
trary in the PRDN property.

For example, consider an n-dimensional Gaussian vector X ∼ N (µ,Σ) with known Σ
for testing µi = 0 against µi > 0, i = 1, . . . , n. The one-sided p-values for this testing
problem obey the PRDN property if Σij ≥ 0 for all i, j ∈ N0 = {1 ≤ l ≤ n : µl = 0}. In
contrast, the PRDS property additionally requires the nonnegativity of Σij for all i ∈ N0

and j /∈ N0 [BY01]. See the Appendix for a proof of this fact and an PRDN example of
two-sided normal p-values [KR81].

4In [BY01], the PRDS property is defined for conditioning indices from any subset of all hypotheses. But
the subset is almost always the nulls in the use of this property. Recognizing this fact, we assume the null
set N0 in the definition for simplicity.
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As shown below, any compliant procedure approximately controls the FDR for p-values
satisfying this new property.

Theorem 3. Assume that the p-values satisfy the PRDN property. Then, any compliant
procedure at level α obeys

FDR ≤ α+ α log
1

α
. (1.2)

In particular, this FDR bound applies to the BH procedure.

The proof of this theorem follows from a simple application of the FDR-linking theorem
in conjunction with the fact FDR0(x) ≤ x (Lemma 2.1 in Section 2) under the PRDN
property. In fact, the proof shows that Theorem 3 can be strengthened to

FDR ≤ π0α+ π0α log
1

π0α
,

which implies (1.2) since α+ α log 1
α is increasing in α ∈ (0, 1].

Theorem 3 is the first result that maintains the FDR of the (original) BH procedure at a
meaningful level under a condition that is strictly less stringent than PRDS. By “meaning-
ful,” we mean that the FDR bound (1.2) can be set to 10%, say, by taking the nominal level
α = 2.05% regardless of n, as opposed to the log-correction bound [BY01], which becomes
too large to be useful as n increases (see Section 4). The FDR bound (1.2) and particularly
the logarithmic factor log 1

α cannot be improved under the PRDN property, as seen from
the lower bound below.

Theorem 4. Fix any ε > 0. If α is sufficiently small (depending on ε) and n is sufficiently
large (depending on both ε and α), then the BH procedure applied to certain PRDN p-values
satisfies

FDR > (1− ε)
(
α+ α log

1

α

)
.

The lower bound on the FDR is attained in an example where the null p-values are
i.i.d. uniform random variables on (0, 1), with certain least favorable non-null p-values con-
structed from an adversarial standpoint.

For more elaboration on this application of the FDR-linking theorem, see Section 2.
This section also proves the FDR-linking theorem.

1.2 Application: FDR consistency

To further explore the use of the FDR-linking theorem, we introduce FDR consistency,
which is a relaxation of FDR control in a certain sense. This new concept is inspired in
part by Theorem 3, from which it follows that the FDR of the BH procedure working on
any PRDN p-values converges to 0 as the nominal level α→ 0 by recognizing the fact

lim
α→0

α+ α log
1

α
= 0.

The convergence is uniform, regardless of the specific distribution of the PRDN p-values
and, in particular, the number of p-values.
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To formulate the definition of FDR consistency, let P denote a class of p-value de-
pendence structures. For example, P can be all PRDN distributions on [0, 1]n for n =
2, 4, 6, . . . .. Next, for any p-value distribution element P ∈ P , let FDR(α;P ) denote the
FDR of the BH procedure at level α supplied with p-values sampled from the distribution
P .

Definition 1.3 (FDR consistency). A dependence class P is said to be FDR-consistent if

lim sup
α→0

sup
P∈P

FDR(α;P ) = 0.

Our discussion above immediately reveals that the following result is true.

Corollary 1.4. All probability distributions of p-values satisfying the PRDN property form
an FDR-consistent dependence class.

In words, instead of specifying the exact FDR level, FDR consistency only requires the
FDR to tend to zero at a rate uniformly over all distribution elements in the class. In
particular, FDR control at the nominal level (or up to a multiplicative constant) implies
FDR consistency. This seemingly weak concept is, however, by no means trivial as there
exists certain p-value distribution that violates FDR consistency (see Section 4). To ap-
preciate this new concept, recognize that to ensure the FDR below a target level over an
FDR-consistent class P , we only need to pick a certain nominal level for the BH procedure
regardless of the number of p-values, albeit perhaps small. As such, the BH procedure
controls the FDR at a “meaningful” level uniformly over the dependence class P .

In light of the FDR-linking theorem, a natural question is whether FDR consistency of
the null dependence implies any useful properties of FDR control on all p-values. Remark-
ably, this is true: the FDR consistency is entirely a property of the null p-values. Loosely
speaking, if the null dependence structures induced by a class P form an FDR-consistent
class, then the original class P is ensured to be FDR-consistent.

Now we formally state this result. For any p-value distribution P in [0, 1]n for some n,
let P0 be the induced probability distribution of the null components of P in [0, 1]n0 for
some n0 ≤ n. Moving on to a dependence class P , we define the induced class

P0 := {P0 : P ∈ P},

that is, the class of all null dependence induced by P .

Theorem 5. If P0 is FDR-consistent, then P must also be FDR-consistent.

This theorem suggests that to prove FDR consistency, it is sufficient to only consider
the null p-values. This profound implication significantly reduces the problem complexity.
For comparison, FDR control in the strict sense does not enjoy such desired complexity
reduction because, as noted in Theorem 4, a loss of a multiplicative factor is unavoidable
in FDR control. Perhaps this is part of the reason why proving exact FDR control under
general dependence is notoriously challenging. In light of the above, FDR consistency might
serve as a target for future theoretical FDR research, at least being a reasonable starting
point for proving exact FDR control.

In Section 3, we prove Theorem 5 using the FDR-linking theorem and present several
FDR-consistent dependence classes.
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1.3 Overview of other contributions

In addition to the two aforementioned contributions, this paper applies the FDR-linking

theorem to arbitrary dependence in Section 4 and considers certain mildly adversarial non-
null p-values for FDR control in Section 5. In short, Section 4 uses the log-correction
bound under the global null [BY01] for FDR0(x) in Theorem 2, which, together with the
FDR-linking theorem, allows us to obtain state-of-the-art FDR guarantee under arbitrary
dependence in certain regimes. In Section 5, we ask if the logarithmic factor in Theorem 4
can be dropped by imposing some constraints on the null-non-null dependence and, inter-
estingly, this is true if the non-null p-values are constructed without knowing the smallest
null p-value.

1.4 Related work

We give a brief review of the literature concerning FDR control of the BH procedure. In
[Yek08], FDR control under non-PRDS dependence is examined through several examples
in the non-asymptotic setting. In addition to introducing the PRDS property, [BY01] shows
that the FDR is always bounded by α multiplied by a factor about log n under arbitrary de-
pendence (the so-called log-correction). This correction can be extended to incorporate prior
knowledge such as weights of hypotheses via shape functions [BR08, RBWJ17]. A depen-
dence property called PRDSS is proposed in [BR08], which generalizes the PRDS property
but is applied to a step-down procedure related to the Benjamini–Liu procedure [BL99]. In
[HJ15], FDR control is ensured under reverse martingale dependence, but this dependence
is mainly motivated by the convenience of the martingale technique for proving FDR control
[STS04]. Recently, [DSZ18, KR18] demonstrate that the FDR is maintained at a reasonable
level as long as the nulls are independent.

An integral part of the FDR-linking theorem is FDR control under the global null. This
is equivalent to the validity of the Simes method. This method is known to control the type
I error under many types of positive dependence structures [HR95, SC96, SC97, Sar98],
for example, under the PRD property [BY01]. Convincing evidence from [Rød06, FRS17]
suggests that the Simes method is likely to be approximately valid in a broader setting
except for certain pathological dependence structures.

On a less related note, much more effort has been devoted to understanding asymptotic
FDR control under dependence, using tools from empirical processes, factor models, and
stochastic processes, among others [YB99, FR01, STS04, GW04, FDR07, Far07, RSW08,
Wu08, RV11, FHG12, LLS17]. Under (strong) dependence, the FDP is well-recognized to
exhibit high variability [Owe05, FZ06, Efr10, SL11] and, accordingly, many methods have
been developed to offer more reliable FDR control in the asymptotic setting [Efr07, SC09,
FKC09, BvdBS+15, FH17, FKSZ18].

2 FDR Control Under PRDN

In this section, we detail the first application of the FDR-linking theorem introduced in
Section 1.1, proving Theorems 3 and 4 in Sections 2.1 and 2.2, respectively. Notably, the
treatment of Section 2.1 is unusual in that we first prove the FDR-linking theorem and
Theorem 3 in fact follows as a corollary.
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2.1 Proving the FDR-linking theorem

We present an upper bound on the false discovery proportion (FDP)

V

max{R, 1}

for compliant procedures, including the BH procedure. Denote by pnull1 , . . . , pnulln0
the null

p-values and thus V ≤ n0 records the number of rejections made from the n0 null p-values5.
Let pnull(1) ≤ pnull(2) ≤ · · · ≤ pnull(n0)

be the ordered null p-values. As will be shown later, any
compliant procedure must satisfy

FDP ≤ min

{
max

1≤j≤n0

j

dnpnull(j) /αe
, 1

}
, (2.1)

where the ceiling function dxe maps x to the least integer that is greater than or equal to
x.

This bound on the FDP serves as the basis for proving Theorem 2. To verify this simple
inequality, our approach is to take an adversarial viewpoint as this will shed light on the
development of the remainder of the paper. Fixing the null p-values, we aim to maximize
the FDP (consequently maximizing FDR) by seeking the least favorable scenario of the
non-null p-values for FDR control. To this end, consider a thought experiment where an
adversary knows which are the n0 null p-values and can adversely alter the non-null p-values
to maximize the FDP using a compliant procedure. By the definition of V , there must be
one (falsely) rejected p-value that is no smaller than pnull(V ) . This fact, together with the

compliance property of the procedure, ensures that pnull(V ) ≤ αR/n (recall that R is the total

number of rejections). Rearranging this inequality yields

R ≥
⌈
npnull(V )/α

⌉
.

Therefore, if V ≥ 1, we get

FDP =
V

max{R, 1}
=
V

R
≤ V

dnpnull(V )/αe
,

from which (2.1) follows since 1 ≤ V ≤ n0 and FDP is always no greater than 1. As is clear,
the maximum FDP can be achieved if the adversary sets dnpnull(j?)/αe − j

? non-null p-values

to 0 and the rest to 1 (suppose n1 = n − n0 is sufficiently large), where j? is the index
maximizing (2.1). Note that (2.1) also holds for V = 0 because FDP = 0 in this case.

Next, we make a connection between (2.1) and the Simes method. Write

max
1≤j≤n0

j

dnpnull(j) /αe
≤ max

1≤j≤n0

αj

npnull(j)

=
π0α

min1≤j≤n0 n0p
null
(j) /j

, (2.2)

5Throughout the paper, we assume the number n0 of null hypotheses are nonzero. Otherwise, FDP is
always 0 by definition.
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where recall that π0 = n0/n. The random variable

min
1≤j≤n0

n0p
null
(j)

j
(2.3)

is precisely the Simes p-value restricted to the nulls. Let F (x) denote its CDF. A closer
look reveals that, for any 0 < x < 1, F (x) is precisely the false discovery rate of the BH
procedure at level x when restricted to the null p-values pnull1 , . . . , pnulln0

. In brief, when
applied to the null p-values, the Simes method at level x rejects the global null hypothesis
if and only if the Simes p-value min1≤j≤n0 n0p

null
(j) /j ≤ x. In the case of rejection, it must

hold that pnull(j) ≤ xj/n0 for some j, meaning that the BH procedure applied to the nulls
rejects at least one p-value, in which case the FDP is equal to 1. This relationship between
the two methods ensures

F (x) = P
(

min
1≤j≤n0

n0p
null
(j) /j ≤ x

)
= FDR0(x) (2.4)

for 0 < x < 1. Taken together, the discussion above yields the following proof.

Proof of Theorem 2. Making use of (2.1) and (2.2), we get

FDR ≤ E

[
min

{
π0α

min1≤j≤n0 n0p
null
(j) /j

, 1

}]

= P
(

min
1≤j≤n0

n0p
null
(j) /j ≤ π0α

)
+ E

[
π0α

min1≤j≤n0 n0p
null
(j) /j

; min
1≤j≤n0

n0p
null
(j) /j > π0α

]

= F (π0α) +

∫ 1

π0α

π0α

x
dF (x),

(2.5)
where the integral is in the sense of the Riemann–Stieltjes integration by recognizing that
the integrator F is càdlàg. Using integration by parts, we proceed with the simplification
of (2.5) as

F (π0α) +

∫ 1

π0α

π0α

x
dF (x) = F (π0α) + π0αF (1)− F (π0α) + π0α

∫ 1

π0α

F (x)

x2
dx

= π0α+ π0α

∫ 1

π0α

F (x)

x2
dx

= π0α+ π0α

∫ 1

π0α

FDR0(x)

x2
dx.

This completes the proof for any compliance procedures, including the BH procedure.

Next, we turn to Theorem 3. We have the following lemma concerning p-values that are
PRDN distributed.

Lemma 2.1. Assume that the p-values satisfy the PRDN property. Then, the Simes p-value
(2.3) on the nulls is stochastically larger than or equal to the uniform random variable on
(0, 1).
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This lemma is equivalent to

P
(

min
1≤j≤n0

n0p
null
(j) /j ≤ x

)
≤ x

for 0 < x < 1. This is true by using (2.4) and the fact FDR0(x) ≤ x ensured by [BY01]. As
an aside, in the case of i.i.d. uniform null p-values, min1≤j≤n0 n0p

null
(j) /j is exactly uniformly

distributed on (0, 1) [Sim86].
Applying Theorem 2, any compliant procedure with PRDN p-values gives

FDR ≤ π0α+ π0α

∫ 1

π0α

x

x2
dx

= π0α+ π0α log
1

π0α

≤ α+ α log
1

α
.

This proves Theorem 3. It should be emphasized that the analysis and reasoning above
apply to not only the BH procedure but also any compliant procedures. More broadly,
if the BH procedure controls the FDR up to a constant c on the nulls or, equivalently,
FDR0(x) ≤ cx, then the FDR-linking theorem concludes that

FDR ≤ π0α+ cπ0α log
1

π0α

for compliant procedures, roughly paying a factor of log 1
α in FDR control due to the least

favorable non-nulls.
As additional background, we informally explain why the logarithmic factor log 1

α ap-
pears in the FDR bound in Theorem 3, though a rigorous treatment will be given in Sec-
tion 2.2. Let all null p-values be i.i.d. uniform variables on (0, 1) and all non-null p-values
be 0 and, additionally, assume n−n0 is sufficiently large. Consider a procedure that rejects
R − 1 non-null p-values and the smallest null p-value pnull(1) , where R = dnpnull(1) /αe. This

procedure is compliant. To see how the term α log(1/α) appears, first note that

FDP =
1

dnpnull(1) /αe
≥ 10

11
· α

npnull(1)

in the case of npnull(1) /α ≥ 10. If n0 ≈ n and n is large, npnull(1) is approximately distributed
as an exponential random variable with mean 1. For sufficiently small α, the logarithmic
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term α log(1/α) appears in

E

[
10

11
· α

npnull(1)

;npnull(1) /α ≥ 10

]
≈ E

[
10

11
· α

Exp(1)
; Exp(1) ≥ 10α

]
=

10α

11

∫ ∞
10α

1

x
e−x dx

=
10α

11

∫ log 12
11

10α

1

x
e−x dx+

10α

11

∫ ∞
log 12

11

1

x
e−x dx

≥ 10α

11

∫ log 12
11

10α

1

x

11

12
dx+O(α)

=
5

6
· α log

1

α
+O(α).

(2.6)

The factor 5/6 above can be made arbitrarily close to 1. As a crucial fact, the analysis
above rests on knowing the most significant null p-value pnull(1) (see Section 5).

In passing, we discuss an important property of the FDR bound in Theorem 1. In-
tuitively, one would expect that the FDR bound given in Theorem 1 increases with the
nominal level α. This is indeed true as we show next.

Proposition 2.2. The function

t+ t

∫ 1

t

FDR0(x)

x2
dx

is non-decreasing in 0 < t < 1.

Proof of Proposition 2.2. Write

f(t) = t+ t

∫ 1

t

FDR0(x)

x2
dx.

This function is continuous. Thus, it suffices to show that the right derivative of f exists
and is nonnegative everywhere. Interpreted as the CDF of the Simes p-value (2.3), FDR0(x)
must be càdlàg. The càdlàg condition allows us to evaluate

∂+f(t) = 1 +

∫ 1

t

FDR0(x)

x2
dx− FDR0(t)

t

≥ 1 +

∫ 1

t

FDR0(t)

x2
dx− FDR0(t)

t

= 1 + FDR0(t)

(
1

t
− 1

)
− FDR0(t)

t

= 1− FDR0(t)

≥ 0.

For completeness, note that the first equality rests on the fact that FDR0(t+) = FDR0(t),
which is, again, ensured by the càdlàg condition. Hence, the proof is complete.
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2.2 Optimality

In this section, we state and prove Theorem 6, a stronger version of Theorem 4. In what
follows, let {ξj}∞j=1 be i.i.d. exponential random variables with mean 1.

Theorem 6 (A stronger version of Theorem 4). For any 0 < α < 1, denote by

Dα := E
[
min

{
max

1≤j<∞

j

d(ξ1 + · · ·+ ξj)/αe
, 1

}]
.

For any ν > 0, there exist certain PRDN p-values on which the BH procedure gives

FDR > Dα − ν.

To be complete, the number n of p-values in the example of this theorem should exceed
some number depending on both α and ν. In relating to Theorem 3, we immediately
conclude that

Dα ≤ α+ α log
1

α

for all 0 < α < 1. Alternatively, this inequality can be gleaned from the fact that

E
[
min

{
max

1≤j<∞

j

d(ξ1 + · · ·+ ξj)/αe
, 1

}]
≤ E

[
min

{
max

1≤j<∞

j

(ξ1 + · · ·+ ξj)/α
, 1

}]
= E

[
min

{
α

min1≤j<∞(ξ1 + · · ·+ ξj)/j
, 1

}]
= α+ α log

1

α
.

The last equality recognizes that the distribution of min1≤j<∞(ξ1 + · · · + ξj)/j is uniform
on (0, 1).

The following lemma shows that for small α, Dα is about as large as α+ α log 1
α . This

explains why Theorem 6 implies Theorem 4 for sufficiently small α.

Lemma 2.3. For any ε > 0, if α is sufficiently small depending on ε, then

Dα > (1− ε)
(
α+ α log

1

α

)
.

Proof of Theorem 4. In Lemma 2.3, use ε/2 in place of ε. We have

FDR > Dα − ν > (1− ε/2)

(
α+ α log

1

α

)
− ν

if α is sufficiently small. Set ν in Theorem 6 as ν = ε
2

(
α+ α log 1

α

)
. Thus, we get

FDR > (1− ε)
(
α+ α log

1

α

)
,

as desired.
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Next, we turn to the proof of Theorem 6. To construct certain PRDN p-values for
Theorem 6, we start with the observation that the upper bound given in (2.1) is almost
tight if the adversary is well-informed. More precisely, given that the adversary knows all
null p-values, the adversary can find the index

j? := argmax
1≤j≤n0

j

dnpnull(j) /αe
, (2.7)

where by convention j? takes the largest value in the presence of ties. Having defined j?,
we consider the following informed adversarial non-null p-values: given n0 null p-values, set

min

{(
dnpnull(j?)/αe − j

?
)
+
, n1

}
non-null p-values to 0 and the remaining non-null p-values to 1. Above, x+ denotes

max{x, 0}. In the event that
(
dnpnull(j?)/αe − j

?
)
+
≤ n1, we have the following fact con-

cerning the BH procedure, where no distributional assumptions are made on the nulls.

Lemma 2.4. Supplied with the informed adversarial non-null p-values, the BH procedure
at level α in the case where dnpnull(j?)/αe − j

? ≤ n1 obeys

FDP = min

{
max

1≤j≤n0

j

dnpnull(j) /αe
, 1

}
, (2.8)

thereby attaining the equality in (2.1) for the FDP.

This lemma confirms that the informed adversary indeed yields (nearly) the least favor-
able p-value configuration for the BH procedure in terms of FDR control. For completeness,
if 1 ≤ dnpnull(j?)/αe − j

? ≤ n1, the BH procedure exactly rejects the j? smallest null p-values

and the dnpnull(j?)/αe−j
? non-null p-values that are set to 0. On the flip side, if npnull(j?)/α ≤ j

?,

the BH procedure rejects at least the j? smallest null p-values (possibly rejects more than
j? null p-values) but none of the non-null p-values, in which case the FDP is 1. This is in
agreement with (2.8). Next is the proof of this lemma.

Proof of Lemma 2.4. In the case where 1 ≤ dnpnull(j?)/αe − j
? ≤ n1, observe that

α(j? + dnpnull(j?)/αe − j
?)

n
≥
αnpnull(j?)/α

n
= pnull(j?),

which implies that the BH procedure rejects at least the j? smallest null p-values and the
dnpnull(j?)/αe − j

? zero-valued non-null p-values. Now, by way of contradiction, suppose, in

addition to the dnpnull(j?)/αe−j
? non-null p-values, the BH procedure rejects j+l null p-values

for some l ≥ 1. By the compliance property of the BH procedure, it must hold that

pnull(j?+l) ≤
α(dnpnull(j?)/αe+ l)

n
,

which implies
dnpnull(j?+l)/αe ≤ dnp

null
(j?)/αe+ l.

13



As such, it concludes that

j? + l

dnpnull(j?+l)/αe
≥ j? + l

dnpnull(j?)/αe+ l
>

j?

dnpnull(j?)/αe
,

where the second inequality rests on the assumption that j? < dnpnull(j?)/αe. This contradicts

the definition of j? in (2.7). Therefore, the BH procedure must reject exactly j? null p-values
and dnpnull(j?)/αe − j

? non-null p-values, thus yielding

FDP =
j?

j? + dnpnull(j?)/αe − j?
= max

1≤j≤n0

j

dnpnull(j) /αe
< 1.

Next, we turn to the case where npnull(j?)/α ≤ j?. In this case, note that pnull(j?) ≤ αj?/n.
Thus, the BH procedure rejects at least the j? most significant null p-values, and none of
the non-null p-values is rejected because non-nulls are all set to 1.

Taken together, the discussion above readily gives the proof of Theorem 6.

Proof of Theorem 6. Lemma 2.4 reveals that

FDP ≥ min

{
max

1≤j≤n0

j

dnpnull(j) /αe
, 1

}
− 1(dnpnull(j?)/αe − j

? > n1)

for the BH procedure supplied with the informed adversarial p-values, where 1(·) is the
indicator function. Thus, we get6

FDR ≥ E

[
min

{
max

1≤j≤n0

j

dnpnull(j) /αe
, 1

}]
− P

(
dnpnull(j?)/αe − j

? > n1

)
. (2.9)

The next step is to find certain PRD null p-values such that the right-hand side of
(2.9) tends to Dα as n→∞. To this end, we consider the case where the n0 null-p-values
are i.i.d. uniform variables U1, . . . , Un0 on (0, 1). The asymptotic regime considered below
satisfies n0, n1 →∞ and n1/n0 → 0. Under these assumptions, we can prove that

E
[
min

{
max

1≤j≤n0

j

dnU(j)/αe
, 1

}]
→ E

[
min

{
max

1≤j<∞

j

d(ξ1 + · · ·+ ξj)/αe
, 1

}]
(2.10)

(recall ξ1, ξ2, . . . are i.i.d. exponential random variables with mean 1) and

P
(
dnU(j?)/αe − j? > n1

)
→ 0, (2.11)

where j? is the same as in (2.7) using U(j) in place of pnull(j) . As is self-evident, (2.9) together

with (2.10) and (2.11) finishes the proof of Theorem 6.
To complete the last step of the proof, we briefly explain why (2.10) and (2.11) are true.

For the first inequality, note that nU(j) converges weakly to ξ1 + · · · + ξj as n → ∞ since

6The analysis shows that the BH is not the most adversarial in terms of maximizing the FDP given the
null p-values.
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n0/n → 1. This weak convergence holds simultaneously for 1 ≤ j ≤ J if J is fixed. To
bridge the gap between taking maximum over {1, . . . , J} and {1,∞}, use the strong law of
large numbers to show that both

max
J+1≤j≤n0

j

dnU(j)/αe
and max

J+1≤j<∞

j

d(ξ1 + · · ·+ ξj)/αe

converge to α in probability as both J, n0 → ∞. For the second inequality, the index j?

is bounded in probability as n → ∞ and, hence, one can slowly increase n1 so that the
probability of dnU(j?)/αe − j? > n1 tends to zero.

In passing, we briefly remark that, supplied with the informed adversarial p-values,
the BH procedure is not the most anti-conservative compliant procedure in the sense of
maximizing the FDP. To see this, define

j� := argmax
1≤j≤n0

{
j

dnpnull(j) /αe
: dnpnull(j) /αe − j ≤ n1

}
,

with the convention that argmax ∅ = 0 in the case where dnpnull(j) /αe − j > n1 for all
1 ≤ j ≤ n0. With this definition in place, the most anti-conservative compliant procedure
rejects the following p-values, depending on whether j� ≥ 1 or not,pnull(1) , . . . , p

null
(j�), and

(
dnpnull(j�)/αe − j

�
)
+

zero-valued non-nulls if j� ≥ 1

∅ if j� = 0.

On a related note, if dnpnull(j?)/αe − j
? ≤ n1, this procedure rejects the same set of p-values

as the BH procedure.

3 FDR Consistency

In this section, we prove Theorem 5 and showcase a number of FDR-consistent dependence
classes. From Definition 1.3, FDR consistency can be equivalently defined as follows: a
dependence class P is FDR-consistent if the BH procedure ensures that, for all p-value
distribution element P ∈ P ,

FDR(α;P ) ≤ Q(α)

holds for a function Q(α) obeying Q(α) → 0 as α → 0. With this equivalent definition in
place, we turn to the proof of Theorem 5.

Proof of Theorem 5. By assumption, we know that

FDR(α;P0) ≤ Q(α)

for any P0 ∈ P0 and a function Q(α) → 0 as α → 0. Without loss of generality, assume
Q(α) ≤ 1. From the FDR-linking theorem, it immediately follows that

FDR(α;P ) ≤ α+ α

∫ 1

α

Q(x)

x2
dx. (3.1)
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Above, P0 is the null dependence by P .
Leveraging the fact Q(α) → 0 as α → 0, for any small ε > 0, we can find δ > 0 such

that Q(α) < ε if α < δ. By means of (3.1), for α < δ, we get

FDR(α;P ) ≤ α+ α

∫ δ

α

Q(x)

x2
dx+ α

∫ 1

δ

Q(x)

x2
dx

≤ α+ α

∫ δ

α

ε

x2
dx+ α

∫ 1

δ

1

x2
dx

= ε+
(1− ε)α

δ
.

Taking any α < εδ
1−ε , we get FDR(α;P ) ≤ 2ε, which holds for all P ∈ P . Since ε can be

arbitrarily small, what we have established reveals that

lim
α→0

sup
P∈P

FDR(α;P ) = 0.

This completes the proof.

Next, we present several examples of FDR-consistent dependence classes. Using Theo-
rem 5, it suffices to examine whether FDR consistency holds under the induced null depen-
dence. For comparison, it is unclear whether the BH procedure controls the FDR at the
nominal level or not in these examples, whereas FDR consistency is a much more feasible
concept to deal with. That being said, a worthwhile point to make is that FDR consistency
is no trivial concept in the sense that, for example, there exists a joint distribution of the
p-values under the global null such that the BH procedure leads to [GR08]

FDR = min

{(
1 +

1

2
+ . . .+

1

n

)
α, 1

}
≈ min{α log n, 1}

for each n, which forms a non-FDR-consistent dependence class because the FDR bound
involves log n.

3.1 FDR-consistent examples

Example 3.1 (Equicorrelated normal distribution). Consider a p-value vector whose null
components are calculated from a (possibly negatively) equicorrelated normal distribution.
More precisely, suppose we observe X0 ∼ N (0,Σ0), where Σ0

ij = ρ if i 6= j ≤ n0, and

otherwise Σ0
ii = 1. The correlation coefficient ρ obeys − 1

n0−1 ≤ ρ < 0. The null p-values

are those for testing EX0
i = 0 against the one-sided or two-sided alternatives, while the

non-null p-values are arbitrary. Then, the dependence class P comprised of all such p-value
distributions is FDR-consistent.

Proof. By Theorem 5, we only need to consider the global null case n = n0. For simplicity,
the proof concerns the case of one-sided p-values and the proof for the two-sided case is very
similar. Furthermore, Corollary 1.4 shows that it is sufficient to only focus on− 1

n−1 ≤ ρ < 0,
the negative correlation regime.
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To begin with, note that FDR consistency of this example is equivalent to the following
problem: for any ε > 0, there exists δ > 0 such that for any nominal level α < δ, the
BH procedure gives FDR ≤ ε under any dependence element in P . Let X1, . . . , Xn be n
standard normal variables that are ρ-equicorrelated for some − 1

n−1 ≤ ρ < 0. Denote by

Yi =
√

1 + ρXi +
√
−ρZ,

where Z is a standard normal variable independent of X1, . . . , Xn. As is clear, Y1, . . . , Yn are
i.i.d. standard normal variables. Let Rα,X denote the event that the Simes method at level
α rejects the global null hypothesis on X1, . . . , Xn. Define Rα,Y similarly for Y1, . . . , Yn. By
definition, in the event Rα,X there must exist some j ≥ 1 such that

min
{
Xi1 , . . . , Xij

}
≥ Φ−1

(
1− αj

n

)
for j indices i1, . . . , ij from {1, 2, . . . , n}. Let A denote the event that Z ≥ − 4

√
n− 1.

Assuming α < 1
2 , we have

min
{
Yi1 , . . . , Yij

}
≥
√

1 + ρΦ−1
(

1− αj

n

)
−
√
−ρ 4
√
n− 1

≥
√

1− 1/(n− 1)Φ−1
(

1− αj

n

)
−
√

1/(n− 1) 4
√
n− 1

≥ n− 2

n− 1
Φ−1

(
1− αj

n

)
− (n− 1)−

1
4 .

Now, suppose we have

n− 2

n− 1
Φ−1

(
1− αj

n

)
− (n− 1)−

1
4 ≥ Φ−1

(
1− αεj

n

)
(3.2)

for some αε ∈ (0, 1) that will be specified later. Then, we get

min
{
Yi1 , . . . , Yij

}
≥ Φ−1

(
1− αεj

n

)
in the event Rα,X ∩ A. As such, Rα,X ∩ A ⊂ Rαε,Y . Consequently, we have

P(Rα,X) = P(Rα,X ∩ A) + P(Rα,X ∩ Ac)
≤ P(Rαε,Y ) + P(Bc)
= P(Rαε,Y ) + Φ

(
− 4
√
n− 1

)
.

From [BY01], it is known that P(Rαε,Y ) = αε. Therefore, the FDR of the BH procedure
applied to the p-values from X1, . . . , Xn satisfies

FDR = P(Rα,X) ≤ αε + Φ
(
− 4
√
n− 1

)
. (3.3)

To continue the proof, we need the following lemma.
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Lemma 3.2. For any ε > 0, there exists a sufficiently large integer N such that

n− 2

n− 1
Φ−1

(
1− αj

n

)
− (n− 1)−

1
4 ≥ Φ−1

(
1− εj

2n

)
(3.4)

for all n ≥ N and all 1 ≤ j ≤ n if α < ε/4.

By Lemma 3.2, we can always find sufficiently large N1, depending only on ε, such that
(3.2) holds for αε = ε/2 and α < ε/4. In this case, we have

P(Rα,X) ≤ ε

2
+ Φ

(
− 4
√
n− 1

)
.

Next, we choose N2 such that Φ
(
− 4
√
n− 1

)
≤ ε

2 if n ≥ N2. Note that N2 depends only on
ε. Thus, if n ≥ max{N1, N2}, from (3.3) we get

FDR = P(Rα,X) ≤ ε (3.5)

for any α < ε/4. Last, let δ1 be sufficiently small such that

sup
α<δ1

FDR(α) ≤ ε (3.6)

for all n < max{N1, N2} and − 1
n−1 ≤ ρ < 0.

Taken together, (3.5) and (3.6) show that FDR ≤ ε for all n and any − 1
n−1 ≤ ρ < 0

if α < min{ε/4, δ1}. This completes the proof. The proof of Lemma 3.2 is deferred to the
Appendix.

Example 3.3 (Arbitrary dependence with vanishing true null proportion). Consider a

sequence of integer pairs {n(l), n(l)0 }∞l=1 such that7 n(l) ≥ n(l)0 and

sup
l

n0 log n0
n

<∞. (3.7)

Let P consist of all n(l)-dimensional p-value distributions with n
(l)
0 null components. Except

for specified n(l), n
(l)
0 , the null dependence and null-non-null dependence can be arbitrary.

Then, P is FDR-consistent.

Proof. We give a direct proof of the FDR consistency of P . By Theorem 7 in Section 4, it
suffices to show that

inf
l

1

π0S(n0)
> 0

and
lim
α→0

S(n0)π0α log
e

S(n0)π0α
= 0

uniformly over P ∈ P . The first inequality is used to pick a sufficiently small α such that
the FDR bound given in Theorem 7 is nontrivial for all l. To verify the two requirements,
note that

1

π0S(n0)
= (1 + o(1))

n

n0 log n0
> c

7Below, the dependence on l is often omitted for the sake of simplicity.
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uniformly in l for some c > 0, as implied by (3.7). Likewise, we have

S(n0)π0α log
e

S(n0)π0α
≤ α

c
log

ec

α
,

which tends to zero uniformly as α→ 0.

Example 3.4 (Two-sided-PRDN dependence). Going back to the example of one-sided
normal p-values given right below Definition 1.2, observe that the PRDN property is not
satisfied by the two-sided p-values, unless under certain additional assumptions [KR81]. In
fact, as with the PRDS property, PRDN in generally does carry over from one-sided to
two-sided p-values (see, for example, one-sided p-values for Studentized tests in [BY01]).
Interestingly, these two-sided p-values maintain FDR consistency. To state precisely, let

p
(o)
1 , . . . , p

(o)
n be (one-sided) PRDN p-values and, in addition, the corresponding test statis-

tics are distributed symmetrically about 0 under the null and are continuous, thereby yield-
ing uniformly distributed null p-values. Define the induced two-sided p-values as

p
(t)
i =

{
2p

(o)
i , if p

(o)
i ≤

1
2

2(1− p(o)i ), if p
(o)
i > 1

2 .

In the case of normal distribution, the two-sided p-value p
(t)
i = 2Φ(−|z|) is given as above

by the one-sided p
(o)
i = Φ(−z). Below, we show that all distributions of these two-sided

p-values form an FDR-consistent dependence class.

Proof. As earlier, Theorem 5 allows us to only consider p
(o)
1 , . . . , p

(o)
n that satisfy PRD under

the global null. To start with, recognize that the BH procedure at level α controls the FDR

at α on these p-values. Due to symmetry, this also applies to 1− p(o)1 , . . . , 1− p(o)n . Denote
by R the number of rejected two-sided p-values by the BH procedure. In the event that

R ≥ 1, it must be the case where at least dR/2e of them are given as 2p
(o)
i or the case where

at least dR/2e are given as 2(1− p(o)i ). In the former case, at least dR/2e from p
(o)
1 , . . . , p

(o)
n

are no greater than
1

2
· αR
n
≤ 1

2
· 2αdR/2e

n
=
αdR/2e

n
. (3.8)

Otherwise, at least dR/2e from p
(o)
1 , . . . , p

(o)
n satisfies

max
{

1− p(o)i1 , . . . , 1− p
(o)
idR/2e

}
≤ αdR/2e

n
. (3.9)

As noted earlier, each of the two events (3.8) and (3.9) happens with probability no more
than α. Taking a union bound, we prove that the FDR on the two-sided p-values is controlled
at level 2α. Therefore, it is FDR-consistent.

Example 3.5 (Block dependence). Fix a positive integer b. Consider a b-block structure
{1, 2, . . . , n} = ∪mi=1Bi, each of size |Bi| = bi ≤ b and b1 + · · · + bm = n. Let P be the
class of all p-value distributions with a b-block structure in the sense that p-values from
different blocks are jointly independent while, within every block, the joint distribution can
be arbitrary. This dependence class is FDR-consistent.
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Proof. Consider the induced null set, which remains block-structured. The induced block
sizes are no more than b. Thus, by Theorem 5, it suffices to consider the global null case.

Denote the p-values by p
(l)
1 , p

(l)
2 , . . . , p

(l)
bl

for the lth block, where l = 1, . . . ,m. Now, we
consider the adjusted p-value

p(l) := min

{
bl min

i
p
(l)
i , 1

}
.

Note that these are valid p-values. Now, in the case where the BH procedure rejects at least
one p-value, that is, R > 0, we know that at least dR/be blocks are rejected. By assumption,
the minimum p-values from at least dR/be blocks are all less than or equal to

αR

n
≤ bαdR/be

n
≤ bαdR/be

m
.

Thus, whenever the BH procedure rejects at least one on the full set of p-values, it also
rejects at least one when applied to the adjusted p-values p(1), . . . , p(m). Thus, due to the
joint independence of the m blocks, we must have

FDR ≤ bα,

which tends to 0 uniformly over the dependence class. Thus, this dependence class is FDR-
consistent.

4 FDR Control Under Arbitrary Dependence

Under arbitrary dependence, [BY01] proves that the FDR of the BH procedure always
satisfies

FDR ≤ min {S(n)π0α, 1} , (4.1)

where S(n) is a shorthand for 1 + 1
2 + · · · + 1

n ≈ log n + 0.577. In the literature, to our
knowledge, this log-correction bound is the best known unconditional FDR bound for the
full range 0 < α < 1. As a matter of fact, if (1 − π0 + π0S(n0))α ≤ 1, this FDR bound is
tight in the sense that there exists a joint distribution of the p-values such that (4.1) is an
equality [GR08] (see also [Rød06] for the case of π0 = 1). Recognizing this fact, one would
imagine that it is very challenging to improve on the log-correction bound.

Interestingly, a direct application of the FDR-linking theorem allows us to strictly
improve the bound (4.1) for a certain range of the nominal level α.

Theorem 7. Under arbitrary dependence of the p-values, any compliant procedure at level
α satisfies

FDR ≤

{
1, if α ≥ 1

π0S(n0)

S(n0)π0α log e
S(n0)π0α

, if α < 1
π0S(n0)

.

This theorem applies to all compliant procedures, whereas it is unclear whether the
bound (4.1) applies to general compliant procedures. To further appreciate this theorem,
we take

α =
1

π0S(n)
.
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With this choice of α, (4.1) yields the trivial bound FDR ≤ 1, whereas Theorem 7 gives

FDR ≤ S(n0)

S(n)
log

eS(n)

S(n0)
< 1

under the very mild condition n > n0 (that is, any configurations of the p-values except for
the global null). More broadly, the new unconditional FDR bound strictly improves (4.1)
for the following range of α:

1

π0S(n0)
e
1− S(n)

S(n0) < α <
1

π0S(n0)
. (4.2)

To see this point, note that it suffices to verify

S(n0)π0α log
e

S(n0)π0α
< S(n)π0α

if α satisfies (4.2). This is clearly true.
We conclude this section by proving Theorem 7.

Proof of Theorem 7. Using the unconditional FDR bound [Hom83, BY01]

FDR0(x) ≤ min {S(n0)x, 1}

under arbitrary dependence of the null p-values, from Theorem 1 we get

FDR ≤ π0α+ π0α

∫ 1

π0α

min {S(n0)x, 1}
x2

dx.

This FDR bound can be simplified as

π0α+ π0α

∫ 1

π0α

min {S(n0)x, 1}
x2

dx =

{
1, if α ≥ 1

π0S(n0)

S(n0)π0α log e
S(n0)π0α

, if α < 1
π0S(n0)

.

This concludes the proof.

5 Bounded Adversariness

As shown in Theorem 4, the logarithmic factor log 1
α in the FDR bound is unavoidable pro-

vided the informed adversarial non-null p-values. A question arising from this observation is
whether the logarithmic factor can be removed if the adversary is restricted from accessing
certain information of the null p-values.

Going back to the informal explanation of the factor log 1
α surrounding (2.6), we learn

that the smallest null p-value is essential for the adversary to construct non-null p-values that
maximize the FDP. In light of this observation, we consider a Bonferroni-masked adversary
that has access to all null p-values but the smallest. Thus, the available information is
not sufficient to perform the Bonferroni correction on the nulls (unless pnull(2) is below the

21



Bonferroni threshold), hence the name Bonferroni-masked adversary. To formally define
this adversary, we use a function

T = T (pnull(2) , . . . , p
null
(n0)

)

to denote the number of true rejections made by the BH procedure, which depends on all
sorted null p-values except for the smallest one. This can be realized by setting T non-null
p-values to 0 and the rest to 1.

The following theorem shows that the logarithmic factor can be dropped in the FDR
bound with independent nulls and any Bonferroni-masked non-nulls. We assume n0 ≥ 2 to
exclude trivial cases.

Theorem 8. Let the null p-values be i.i.d. uniform variables on (0, 1) and the non-null
p-values be provided by any Bonferroni-masked adversary. Then, any compliant procedure
at level α ensures

FDR ≤ 3.5α.

As the proof of Theorem 4 also assumes i.i.d. uniform null p-values, the improvement
of the FDR bound in Theorem 8 can only be attributed to the withholding of the most
significant null p-value to the Bonferroni-masked adversary. As an aside, we remark that
the independence of the null p-values is crucial to Theorem 8 since, in the presence of
correlation, other null p-values would reveal much information about the smallest null p-
value.

Now, we prove Theorem 8 as follows.

Proof of Theorem 8. As earlier, V denotes the number of false rejections. If V ≥ 2, we have

FDP ≤ max
2≤j≤n0

αj

npnull(j)

,

which remains true if V = 0 because FDP = 0 in this case. In the case of V = 1,
the compliance condition shows that the rejected null p-value is below α(T + 1)/n, thus
implying

pnull(1) ≤
α(T + 1)

n
.

Taken together, the two inequalities above give

FDR = E(FDP;R 6= T + 1) + E(FDP;R = T + 1)

≤ E

[
max

2≤j≤n0

αj

npnull(j)

;R 6= T + 1

]
+ E

[
1

T + 1
;R = T + 1

]

≤ E

[
max

2≤j≤n0

αj

npnull(j)

]
+ E

1
(
pnull(1) ≤ α(T + 1)/n

)
T + 1

 .
(5.1)

To bound the term contributed by the case of R 6= T + 1 in (5.1), note that Lemma 3.1
of [DSZ18] ensures that

E

[
max

2≤j≤n0

αj

npnull(j)

]
≤ C2π0α (5.2)
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for a constant C2 between 2.4 and 2.5. Now we turn to the term contributed by the case of
R = T + 1. First, write

E

1
(
pnull(1) ≤ α(T + 1)/n

)
T + 1

 = E

E

1
(
pnull(1) ≤ α(T + 1)/n

)
T + 1

∣∣∣∣∣pnull(2) , . . . , p
null
(n0)

 .

Recognizing that pnull(1) is (conditionally) uniformly distributed on (0, pnull(2) ) and T is measur-

able with respect to pnull(2) , . . . , p
null
(n0)

, we get

E

1
(
pnull(1) ≤ α(T + 1)/n

)
T + 1

∣∣∣∣∣pnull(2) , . . . , p
null
(n0)

 ≤ α(T+1)/n

pnull
(2)

T + 1
=

α

npnull(2)

,

where the inequality reduces to equality if α(T + 1)/n ≤ pnull(2) . This yields

E

1
(
pnull(1) ≤ α(T + 1)/n

)
T + 1

 ≤ E

[
α

npnull(2)

]
. (5.3)

To proceed, note the fact that pnull(2) follows the Beta distribution parametrized by (2, n0−1).
By means of this fact, we have

E

[
α

npnull(2)

]
=
α

n

∫ 1

0

1

x

x(1− x)n0−2

Beta(2, n0 − 1)
dx = π0α,

which, together with (5.2) and (5.3), reveals that

FDR ≤ C2π0α+ π0α < 3.5π0α ≤ 3.5α.

This completes the proof.

6 Discussion

In this paper, we have demonstrated the use of the FDR-linking theorem in proving FDR
control properties through examples for compliant procedures, including the BH procedure.
In slightly more detail, this theorem shows that any compliant procedures control the FDR
up to a factor that is independent of the number of hypotheses under the PRDN dependence
of the p-values, which strictly relaxes the PRDS property by only imposing distributional
assumptions on the nulls. Moreover, the FDR bound is optimal under this new dependence,
shedding light on the sharpness of the FDR-linking theorem. In another application, we
propose FDR consistency as a flexible, amenable concept to complement FDR control and,
using the FDR-linking theorem, prove that this new property relies entirely on the null
p-values, regardless of the non-nulls.

Loosely speaking, the FDR-linking theorem reveals that FDR control is basically a
matter of the null p-values. This is a blessing for researchers in that an analysis of the
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FDR would not lose much of its value by focusing only on the joint distribution of the
null p-values. This is particularly convenient if some knowledge of the null dependence is
available. From a different angle, this theorem unveils the robustness of the BH procedure
in FDR control against any unfavorable or even adversarial dependence between the null
p-values and non-null p-values. This viewpoint is in agreement with the widely observed
phenomenon that the BH procedure seldom loses much control over the FDR beyond what
has been proved [Sto03, RB07, GSS08, CH09].

We conclude this paper with several promising directions for future work. First, the
simple bound on the FDP (2.1) can possibly be extended to variants of the FDR crite-
rion and general BH-type multiple testing procedures. For instance, the false discovery
exceedance [GW04, vdLDP04, RW07, GHS14], defined as the probability that the FDP
exceeds a specified level, is a popular alternative to the FDR since the realized FDP can
significantly deviate from its expectation (FDR) in certain settings [Efr07]. To control the
false discovery exceedance, it follows from (2.1) that

P(FDP ≥ γ) ≤ P

(
max

1≤j≤n0

αj

npnull(j)

≥ γ

)
≤ π0α

γ

for any 0 < γ < 1 if the p-values satisfy the PRDN property. Moreover, the bound (2.1) can
be used to derive a bound on EFDPk for an integer k ≥ 2 [FZ06] and to possibly maximize
the variance of FDP, thereby delineating the variability of FDR control. It is also of interest
to incorporate prior knowledge such as weights of hypotheses and the true null proportion
into the FDP bound [GRW06, BKY06, STS04, Sto02, RBWJ17].

More broadly, the FDR-linking inequality (1.1) in Theorem 1 calls for further investi-
gation. In addition to Theorem 4, we wonder if the tightness of (1.1) remains under general
dependence of the nulls. Practically speaking, the non-null p-values are unlikely to be the
least favorable for FDR control as in Theorem 4 and, therefore, it is worth trying to im-
prove the FDR bound in the FDR-linking theorem by assuming more realistic conditions
on the null-non-null dependence. Theorem 8 has made a step toward this goal. Due to the
connection between FDR0(x) and the Simes method, a related direction is to explore null
dependence under which the Simes method controls the type I error at a reasonably small
level. For example, it is likely that for a ρ-equicorrelated multivariate normal distribution,
the Simes p-value would be quite conservative for a range of ρ. If so, it would lead to an
FDR bound of the form cα for some constant c using the FDR-linking theorem.

Finally, we present a challenging problem whether FDR consistency holds for many
common distributions of p-values. Specifically, we ask:

Open Problem. Prove or disprove that p-values for testing means in any multivariate
normal distribution with known covariance form an FDR-consistent dependence class.

By Theorem 5, we only need to focus on the global null case, and it does not matter whether
the p-values are two-sided or one-sided as in Example 3.1. We believe that this problem is
true given that the Simes method is empirically observed to be approximately valid under
many types of dependence structures [RB07], though pathological counterexamples exist
[Rød06, FRS17].
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A Appendix

A.1 The PRDN example in Section 1

The one-sided p-values given as an example right below Definition 1.2 satisfy the PRDN
property. The simple proof below follows from that of Case 1 in Section 3.1 of [BY01].

We introduce some notation for the proof. Let XN0 be the vector comprised of the n0

null components of X. For any i ∈ N0, let X
(i)
N0

denote the entry corresponding to i and

X
(−i)
N0

denote the vector derived from XN0 by deleting X
(i)
N0

. Let Σ0
−i,−i be the covariance

matrix of X
(−i)
N0

, Σ0
i,−i be the covariance of X

(i)
N0

and X
(−i)
N0

, and last, Σ0
i,i be the variance of

X
(i)
N0

. In this setup, the distribution of X
(−i)
N0

given X
(i)
N0

= x is a normal distribution with
mean and covariance given as

Σ0
i,−i(Σ

0
i,i)
−1x, Σ0

−i,−i − Σ0
i,−i(Σ

0
i,i)
−1(Σ0

i,−i)
>,

respectively.
Above, while the conditional covariance Σ0

−i,−i −Σ0
i,−i(Σ

0
i,i)
−1(Σ0

i,−i)
> is fixed, the con-

ditional mean Σ0
i,−i(Σ

0
i,i)
−1x increases with x since Σ0

i,−i is entrywise nonnegative. This
fact, together with the observation that the one-sided normal p-value is a monotone trans-
formation of the z-value, implies that the one-sided p-values satisfy the PRDN property.

For information, we give a sufficient condition for the two-sided normal p-values normal
to satisfy the PRDN property. The setting is the same as above. To this end, we only
need to focus on the covariance Σ0 of the null part XN0 of the full vector X. As shown in
[KR81], the density of |XN0 | is MTP2 if and only if there exists a diagonal matrix B with
diagonal entries ±1 such that the off-diagonal entries of −B(Σ0)−1B are all nonnegative.
Thus, the existence of such a matrix B ensures that the two-sided p-values satisfy the
PRDN property because the MTP2 condition implies PRDS on any subset. As an aside,
this sufficient condition might not be necessary.

A.2 Proof of Lemma 3.2 in Section 3

Below, we prove Lemma 3.2.

Proof of Lemma 3.2. The lemma is equivalent to

Φ−1
(

1− εj

4n

)
− Φ−1

(
1− εj

2n

)
≥ 1

n− 1
Φ−1

(
1− εj

4n

)
+ (n− 1)−

1
4 . (A.1)

On the one hand, for sufficiently large n and any 1 ≤ j ≤ n, we know

1

n− 1
Φ−1

(
1− εj

4n

)
+ (n− 1)−

1
4 =

O(1)
√

log(4n/(εj))

n− 1
+ (n− 1)−

1
4

= O(n−
1
4 ).

(A.2)
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On the other hand, we have

Φ−1
(

1− εj

4n

)
− Φ−1

(
1− εj

2n

)
&

2 log 2

2
√

2 log 4n
εj

&
1√

log n

(A.3)

if n is sufficiently large. Combining (A.2) and (A.3) proves (A.1) if n ≥ N for some N that
only depends on ε.
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