A Universal Law in Deep Learning from MLP to Transformer, and Beyond

Weijie Su

University of Pennsylvania

A new physics of the 21st century

Workshop on Theory of Deep Learning: Where next?

Summer Cluster: Deep Learning Theory

Weijie Su@Wharton

• Why don't heavily parameterized neural networks overfit the data?

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation get stuck in poor local minima with low value of the loss function, yet bad test error?

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation get stuck in poor local minima with low value of the loss function, yet bad test error?

- Why don't heavily parameterized neural networks overfit the data?
 - What is the effective number of parameters?

 Why doesn't backpropagation get stuck in poor local minima with low value of the loss function, yet bad test error?

Yet another bitter lesson (in addition to Sutton's)

Very difficult to build a mathematical foundation for deep learning...

• Highly incomplete: Kawaguchi'16, Arora et al.'19, Jacot et al.'18, Allen-Zhu et al.'18, Du et al.'19, Mei et al.'19,...

This talk

- A small surrogate model
 - Analyze the last-layer weights and features of well-trained neural networks
- A simple geometric law in MLP
 - Describe how data are separated through layers in well-trained neural networks
- S Extension of the law to Transformer and beyond
 - Describe how the next token is predicted across layers in Transformer

Part I: A Layer-Peeled Model

Collaborators

- Cong Fang (Penn→Peking University)
- Hangfeng He (Penn→University of Rochester)
- Qi Long (Penn)

Illustration of our approach (for MLP)

1-Layer-Peeled Model

2-Layer-Peeled Model

Setup for deep learning

Neural network for *K*-class classification:

$$\boldsymbol{f}(\boldsymbol{x}; \boldsymbol{W}_{\mathsf{full}}) = \boldsymbol{W}_L \sigma \left(\boldsymbol{W}_{L-1} \sigma(\cdots \sigma(\boldsymbol{W}_1 \boldsymbol{x}) \cdots) \right)$$

- $\sigma(\cdot)$ is a nonlinear activation function
- $W_{\mathsf{full}} := \{W_1, W_2, \dots, W_L\}$ collects the weights
- Bias omitted

Optimization problem:

$$\min_{\boldsymbol{W}_{\mathsf{full}}} \ \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \mathcal{L}(\boldsymbol{f}(\boldsymbol{x}_{k,i}; \boldsymbol{W}_{\mathsf{full}}), \boldsymbol{y}_k) + \frac{\lambda}{2} \|\boldsymbol{W}_{\mathsf{full}}\|^2$$

- y_k is a one-hot vector denoting the k-th class
- λ weight decay parameter, $\mathcal L$ cross-entropy loss

A peek at Layer-Peeled Model

$$\begin{aligned} \boldsymbol{f}(\boldsymbol{x}; \boldsymbol{W}_{\mathsf{full}}) &= \boldsymbol{W}_L \sigma \left(\boldsymbol{W}_{L-1} \sigma (\cdots \sigma(\boldsymbol{W}_1 \boldsymbol{x}) \cdots) \right) \\ \min_{\boldsymbol{W}_{\mathsf{full}}} \quad \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \mathcal{L}(\boldsymbol{f}(\boldsymbol{x}_{k,i}; \boldsymbol{W}_{\mathsf{full}}), \boldsymbol{y}_k) + \frac{\lambda}{2} \| \boldsymbol{W}_{\mathsf{full}} \|^2 \end{aligned}$$

• Difficult to pinpoint how any layer W_l influences the output

A peek at Layer-Peeled Model

$$\boldsymbol{f}(\boldsymbol{x}; \boldsymbol{W}_{\mathsf{full}}) = \boldsymbol{W}_{L} \sigma \left(\boldsymbol{W}_{L-1} \sigma(\cdots \sigma(\boldsymbol{W}_{1} \boldsymbol{x}) \cdots) \right)$$

$$\min_{\boldsymbol{W}_{L},\boldsymbol{H}} \quad \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n_{k}} \mathcal{L}(\boldsymbol{W}_{L}\boldsymbol{h}_{k,i}, \boldsymbol{y}_{k}) + \frac{\lambda}{2} \|\boldsymbol{W}_{\mathsf{full}}\|^{2}$$

• Difficult to pinpoint how any layer W_l influences the output

•
$$\boldsymbol{h}_{k,i}$$
 denotes $\sigma\left(\boldsymbol{W}_{L-1}\sigma(\cdots\sigma(\boldsymbol{W}_{1}\boldsymbol{x}_{k,i})\cdots)
ight)$; $\boldsymbol{W}_{L}=\left[\boldsymbol{w}_{1},\ldots,\boldsymbol{w}_{K}
ight]^{ op}$

A peek at Layer-Peeled Model

$$\boldsymbol{f}(\boldsymbol{x}; \boldsymbol{W}_{\mathsf{full}}) = \boldsymbol{W}_L \sigma \left(\boldsymbol{W}_{L-1} \sigma (\cdots \sigma (\boldsymbol{W}_1 \boldsymbol{x}) \cdots) \right)$$

$$\begin{split} \overbrace{\mathbf{W}_{L}, \mathbf{H}}^{\min} & \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n_{k}} \mathcal{L}(\mathbf{W}_{L} \mathbf{h}_{k,i}, \mathbf{y}_{k}) \\ \text{s.t.} & \frac{1}{K} \sum_{k=1}^{K} \|\mathbf{w}_{k}\|^{2} \leq E_{W} \\ & \frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \|\mathbf{h}_{k,i}\|^{2} \leq E_{H} \end{split}$$

- Difficult to pinpoint how any layer W_l influences the output
- $\boldsymbol{h}_{k,i}$ denotes $\sigma \left(\boldsymbol{W}_{L-1} \sigma(\cdots \sigma(\boldsymbol{W}_1 \boldsymbol{x}_{k,i}) \cdots) \right); \boldsymbol{W}_L = [\boldsymbol{w}_1, \dots, \boldsymbol{w}_K]^\top$
- Terminal phase of training (Papyan et al. 2020)

Weijie Su@Wharton

Derivation: an ansatz

Assumption

$$\left\{\boldsymbol{H}(\boldsymbol{W}_{-L}): \|\boldsymbol{W}_{-L}\|^2 \leqslant C_2\right\} \approx \left\{\boldsymbol{H}: \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\boldsymbol{h}_{k,i}\|^2 \leqslant C_2'\right\}$$

n N

$$\min_{\boldsymbol{W}_{L},\boldsymbol{H}} \quad \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n_{k}} \mathcal{L}(\boldsymbol{W}_{L}\boldsymbol{h}_{k,i},\boldsymbol{y}_{k})$$
s.t. $\|\boldsymbol{W}_{L}\|^{2} \leq C_{1}$
 $\boldsymbol{H} \in \{\boldsymbol{H}(\boldsymbol{W}_{-L}): \|\boldsymbol{W}_{-L}\|^{2} \leq C_{2}\}$

$$\begin{split} \min_{\boldsymbol{V},\boldsymbol{H}} & \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \mathcal{L}(\boldsymbol{W}\boldsymbol{h}_{k,i}, \boldsymbol{y}_k) \\ \text{s.t.} & \frac{1}{K} \sum_{k=1}^{K} \|\boldsymbol{w}_k\|^2 \leq E_W \\ & \frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\boldsymbol{h}_{k,i}\|^2 \leq E_H \end{split}$$

- Self-duality of ℓ_2 spaces
- More justification for the ansatz later

Weijie Su@Wharton

Balanced training

All class sizes are equal: $n_1 = n_2 = \cdots = n_K$

Balanced training

All class sizes are equal: $n_1 = n_2 = \cdots = n_K$

What can the Layer-Peeled Model say?

Balanced training

All class sizes are equal: $n_1 = n_2 = \cdots = n_K$

What can the Layer-Peeled Model say?

Theorem

Any global minimizer $\boldsymbol{W}^{\star} \equiv [\boldsymbol{w}_{1}^{\star}, \dots, \boldsymbol{w}_{K}^{\star}]^{\top}, \boldsymbol{H}^{\star} \equiv [\boldsymbol{h}_{k,i}^{\star} : 1 \leq k \leq K, 1 \leq i \leq n]$ with cross-entropy loss obeys

$$\boldsymbol{h}_{k,i}^{\star} = C\boldsymbol{w}_k^{\star} = C'\boldsymbol{m}_k^{\star},$$

where $[{m m}_1^\star,\ldots,{m m}_K^\star]$ forms a K-simplex equiangular tight frame (ETF)

• $h_{k,i}^{\star}$ depends only on the class membership!

•
$$C = \sqrt{E_H/E_W}, C' = \sqrt{E_H}$$

Weijie Su@Wharton

K-simplex ETF

K equal-length vectors form the largest possible equal-sized angles between any pair

Equivalently, random variables ξ_1, \ldots, ξ_K of mean 0 and variance 1. If $\mathbb{E}\xi_i \xi_j = \rho$ for all $i \neq j$, what's the min of ρ ?

This is simply Neural Collapse!

Papyan, Han, and Donoho discovered *Neural Collapse* in 2020:

- 1 Variability collapse: features collapse to their class means
- 2 Class means centered at their global mean collapse to ETF
- **3** Up to scaling, last-layer classifiers each collapse to class means
- 4 Classifier's decision collapses to choosing the closet class mean

Implications on better generalization, large margin, and robustness

[Mixon et al.'20, E and Wojtowytsch'20, Lu and Steinerberger'20, Zhu et al.'21] justified neural collapse using different models Weijie Su@Wharton 11 Neural Collapse can justify the Layer-Peeled Model

About the ansatz

Recall

$$\left\{\boldsymbol{H}(\boldsymbol{W}_{-L}): \|\boldsymbol{W}_{-L}\|^2 \leqslant C_2\right\} \approx \left\{\boldsymbol{H}: \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\boldsymbol{h}_{k,i}\|^2 \leqslant C_2'\right\}$$

This gives

$$\begin{split} \min_{\boldsymbol{W},\boldsymbol{H}} & \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \mathcal{L}(\boldsymbol{W}\boldsymbol{h}_{k,i}, \boldsymbol{y}_k) \\ \text{s.t.} & \frac{1}{K} \sum_{k=1}^{K} \|\boldsymbol{w}_k\|^2 \leq E_W \\ & \frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\boldsymbol{h}_{k,i}\|^2 \leq E_H \end{split}$$

Weijie Su@Wharton

What happens without the ansatz?

Without the ansatz:

$$\begin{split} \min_{\boldsymbol{W},\boldsymbol{H}} & \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}(\boldsymbol{W}\boldsymbol{h}_{k,i},\boldsymbol{y}_k) \\ \text{s.t.} & \frac{1}{K} \sum_{k=1}^{K} \|\boldsymbol{w}_k\|^2 \leq E_W \\ & \frac{1}{K} \sum_{k=1}^{K} \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{h}_{k,i}\|_q^q \leq E_H \end{split}$$

Proposition

Assume $K \ge 3$ and $p \ge K$. For any $q \in (0,2) \cup (2,\infty)$, neural collapse does **not** emerge in the model above

What happens without the ansatz?

Without the ansatz:

$$\begin{split} \min_{\boldsymbol{W},\boldsymbol{H}} & \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}(\boldsymbol{W}\boldsymbol{h}_{k,i},\boldsymbol{y}_k) \\ \text{s.t.} & \frac{1}{K} \sum_{k=1}^{K} \|\boldsymbol{w}_k\|^2 \leq E_W \\ & \frac{1}{K} \sum_{k=1}^{K} \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{h}_{k,i}\|_q^q \leq E_E \end{split}$$

Proposition

Assume $K \ge 3$ and $p \ge K$. For any $q \in (0,2) \cup (2,\infty)$, neural collapse does **not** emerge in the model above

• Is it possible to directly justify the ansatz?

Weijie Su@Wharton

Can the Layer-Peeled Model predict something?

Datasets often have a disproportionate ratio of observations in each class

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

• The first K_A majority classes each contain n_A training examples $(n_1 = n_2 = \cdots = n_{K_A} = n_A)$

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

- The first K_A majority classes each contain n_A training examples $(n_1 = n_2 = \cdots = n_{K_A} = n_A)$
- The remaining $K_B := K K_A$ minority classes each contain n_B examples $(n_{K_A+1} = n_{K_A+2} = \cdots = n_K = n_B)$

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

- The first K_A majority classes each contain n_A training examples $(n_1 = n_2 = \cdots = n_{K_A} = n_A)$
- The remaining $K_B := K K_A$ minority classes each contain n_B examples $(n_{K_A+1} = n_{K_A+2} = \cdots = n_K = n_B)$
- Call $R := n_A/n_B > 1$ the imbalance ratio

Convex relaxation

$$\min_{\boldsymbol{X} \in \mathbb{R}^{2K \times 2K}} \sum_{k=1}^{K} \frac{n_k}{N} \mathcal{L}(\boldsymbol{z}_k, \boldsymbol{y}_k)$$
s.t. $\boldsymbol{z}_k = [\boldsymbol{X}(k, K+1), \boldsymbol{X}(k, K+2), \dots, \boldsymbol{X}(k, 2K)]^\top$

$$\frac{1}{K} \sum_{k=1}^{K} \boldsymbol{X}(k, k) \leq E_H, \quad \frac{1}{K} \sum_{k=K+1}^{2K} \boldsymbol{X}(k, k) \leq E_W$$

$$\boldsymbol{X} \succeq 0$$

• Not a semidefinite program in the strict sense because a semidefinite program uses a linear objective function

A numerical surprise

Average cosine of between-minority-class angles

- **(1)** When $R < R_0$ for some $R_0 > 0$, average between-minority-class angle becomes smaller as R increases
- 2 Once $R \ge R_0$, average between-minority-class angle becomes **0**: implying that all minority classifiers collapse! Weijie Su@Wharton 16/53

Minority Collapse

- (1) When $R < R_0$ for some $R_0 > 0$, average between-minority-class angle becomes smaller as R increases
- Once R ≥ R₀, average between-minority-class angle becomes 0: implying that all minority classifiers collapse!

Proposition

Let (H^{\star}, W^{\star}) be any global minimizer of the Layer-Peeled Model. As $R \equiv n_A/n_B \to \infty$, we have

 $\lim \boldsymbol{w}_k^{\star} - \boldsymbol{w}_{k'}^{\star} = \boldsymbol{0}_p \text{ for all } K_A < k < k' \leqslant K$

• The prediction on the minority classes becomes completely at random

Minority Collapse

- (1) When $R < R_0$ for some $R_0 > 0$, average between-minority-class angle becomes smaller as R increases
- Once R ≥ R₀, average between-minority-class angle becomes 0: implying that all minority classifiers collapse!

Proposition (Chen 2023)

Let (H^*, W^*) be any global minimizer of the Layer-Peeled Model. When $R \ge R^*$, we have

$$\boldsymbol{w}_k^\star = \boldsymbol{w}_{k'}^\star$$
 for all $K_A < k < k' \leqslant K$

- The prediction on the minority classes becomes completely at random
- Fairness issue

Illustration of Minority Collapse

Illustration of Minority Collapse

Intuition for Minority Collapse

$$\begin{split} \min_{\boldsymbol{W},\boldsymbol{H}} & \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \mathcal{L}(\boldsymbol{W}\boldsymbol{h}_{k,i}, \boldsymbol{y}_k) \\ \text{s.t.} & \frac{1}{K} \sum_{k=1}^{K} \|\boldsymbol{w}_k\|^2 \leq E_W \\ & \frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i=1}^{n_k} \|\boldsymbol{h}_{k,i}\|^2 \leq E_H \end{split}$$

Competition for space!

Is Minority Collapse a real thing?

Minority Collapse in experiments

Part II: A Law of Data Separation

Let's dig into it

Does neural collapse extend to intermediate layers?

Let's dig into it

Does neural collapse extend to intermediate layers?

- Seems chaotic
- Too many nonlinearities, plus high degrees of non-uniqueness

Let's dig into it

Does neural collapse extend to intermediate layers?

- Seems chaotic
- Too many nonlinearities, plus high degrees of non-uniqueness
- Any other patterns?

Collaborator

• Hangfeng He (Penn→University of Rochester)

Collaborator

• Hangfeng He (Penn→University of Rochester)

Hangfeng He

Home Research Teaching

I am an Assistant Professor in the Department of Computer Science and the Goergen Institute for Data Science at the University of Rochester. Before this, I was a Ph.D. student at the University of Pennsylvania, where I worked with Dan Roth and Weijie Su. Before that, I received my bachelor's degree from Peking University in 2017.

My research interests include machine learning and natural language processing, with a focus on incidental supervision for natural language understanding, interpretability of deep neural networks, and reasoning in natural language.

[Google Scholar] [CV]

Contact

Office: 3009 Wegmans Hall, 250 Hutchison Rd, Rochester, NY 14620 Email: hangfeng.he@rochester.edu

Chaotic patterns

Weijie Su@Wharton

"Big" symmetries are gone. How about "small" symmetries?

A numerical surprise: equi-separation

8-layer feedforward network trained on FashinMNIST using Adam

A numerical surprise

8-layer feedforward network trained on FashinMNIST using Adam

A sharp comparison

Weijie Su@Wharton

More experimental results

More experimental results

Weijie Su@Wharton

A canonical quantity in multivariate statistics

 $ar{x}_k := (x_{k,1} + \dots + x_{k,n_k})/n_k$: sample mean of Class k $ar{x} := (n_1 ar{x}_1 + \dots + n_K ar{x}_K)/n$: global mean ($n := n_1 + \dots + n_K$)

A canonical quantity in multivariate statistics

$$\begin{split} \bar{\boldsymbol{x}}_k &:= (\boldsymbol{x}_{k,1} + \dots + \boldsymbol{x}_{k,n_k})/n_k \text{: sample mean of Class } k \\ \bar{\boldsymbol{x}} &:= (n_1 \bar{\boldsymbol{x}}_1 + \dots + n_K \bar{\boldsymbol{x}}_K)/n \text{: global mean } (n := n_1 + \dots + n_K) \\ \text{Sum of squares between } (signal) \qquad \text{Sum of squares within } (noise) \end{split}$$

$$SSB := \frac{1}{n} \sum_{k=1}^{K} n_k (\bar{\boldsymbol{x}}_k - \bar{\boldsymbol{x}}) (\bar{\boldsymbol{x}}_k - \bar{\boldsymbol{x}})^\top \qquad SSW := \frac{1}{n} \sum_{k=1}^{K} \sum_{i=1}^{n_k} (\boldsymbol{x}_{k,i} - \bar{\boldsymbol{x}}_k) (\boldsymbol{x}_{k,i} - \bar{\boldsymbol{x}}_k)^\top$$

A canonical quantity in multivariate statistics

$$\begin{split} \bar{\boldsymbol{x}}_k &:= (\boldsymbol{x}_{k,1} + \dots + \boldsymbol{x}_{k,n_k})/n_k \text{: sample mean of Class } k \\ \bar{\boldsymbol{x}} &:= (n_1 \bar{\boldsymbol{x}}_1 + \dots + n_K \bar{\boldsymbol{x}}_K)/n \text{: global mean } (n := n_1 + \dots + n_K) \\ \text{Sum of squares between } (signal) \qquad \text{Sum of squares within } (noise) \end{split}$$

$$SSB := \frac{1}{n} \sum_{k=1}^{K} n_k (\bar{\boldsymbol{x}}_k - \bar{\boldsymbol{x}}) (\bar{\boldsymbol{x}}_k - \bar{\boldsymbol{x}})^\top \qquad SSW := \frac{1}{n} \sum_{k=1}^{K} \sum_{i=1}^{n_k} (\boldsymbol{x}_{k,i} - \bar{\boldsymbol{x}}_k) (\boldsymbol{x}_{k,i} - \bar{\boldsymbol{x}}_k)^\top$$

Measure of how well data are separated

 $D := \operatorname{Tr}(\operatorname{SSW} \operatorname{SSB}^+)$

- SSB^+ is the Moore–Penrose inverse of the matrix SSB
- Inverse signal-to-noise ratio (Papyan et al.'20)
- Weighted projection of noise onto (K 1)-D space spanned by SSB. Thus no need to normalize D by the dimension

Weijie Su@Wharton

It's well separated

Weijie Su@Wharton

An (empirical) law of deep learning

 D_l : separation measure for data before passing through the l^{th} layer

An (empirical) law of deep learning

 D_l : separation measure for data before passing through the l^{th} layer

The law of equi-separation For $1 \leq l \leq L$ and some $0 < \rho < 1$: $D_l \approx c\rho^l$

- Nonlinearity is crucial
- Equivalently,

$$\log D_{l+1} - \log D_l \approx -\log \frac{1}{\rho}$$

•
$$\rho = 0.53$$
 above. So half-life: $t_{\frac{1}{2}} = \frac{\log 2}{\log \rho^{-1}} = 1.1$

Weijie Su@Wharton

When does it emerge?

32/53

When does it emerge? Earlier than neural collapse

32/53

Earlier than neural collapse

Is this law pervasive?

Is this law pervasive?

Yes

Is this law pervasive?

Yes

Does this law provide insights into the practice of deep learning?

Is this law pervasive?

Yes

Does this law provide insights into the practice of deep learning?

Yes

Is this law pervasive?

Yes

Does this law provide insights into the practice of deep learning?

Yes

Any intuition about why this law appears?

Is this law pervasive?	Yes
Does this law provide insights into the practice of deep learning?	Yes
Any intuition about why this law appears?	I think so

Is this law pervasive?	Yes
Does this law provide insights into the practice of deep learning?	Yes
Any intuition about why this law appears?	I think so
Can we prove this law?	

Is this law pervasive?	Yes
Does this law provide insights into the practice of deep learning?	Yes
Any intuition about why this law appears?	I think so
Can we prove this law?	Not yet

Data, imbalance, and learning rate

Weijie Su@Wharton

Architecture

Guidelines and insights from the law of equi-separation

The trilogy of the deep learning practice

- Network architecture
- Training
- Interpretation

Dependence on the depth

 $D_L \approx c \rho^L$: deep learning is necessarily to be deep

Dependence on the depth

 $D_L \approx c \rho^L$: deep learning is necessarily to be deep

However, a complete story is slightly different

Dependence on the depth

 $D_L \approx c \rho^L$: deep learning is necessarily to be deep

However, a complete story is slightly different

- The choice of depth should consider the complexity of the applications
- Prior literature does not take the data-separation perspective (Srivastava et al.'15)

Data-separation perspective on width and shape

Data-separation perspective on width and shape

- Very wide neural networks should not be recommended (Tan and Le'19)
- Look vertically rather than horizontally when judging a network

Overall separation ability
$$R := \frac{D_L}{D_1} = \frac{D_L}{D_{L-1}} \times \frac{D_{L-1}}{D_{L-2}} \times \cdots \times \frac{D_2}{D_1}$$

Overall separation ability $R := \frac{D_L}{D_1} = \frac{D_L}{D_{L-1}} \times \frac{D_{L-1}}{D_{L-2}} \times \cdots \times \frac{D_2}{D_1}$ Perturb each layer:

$$\left(\frac{D_L}{D_{L-1}} + \varepsilon\right) \left(\frac{D_{L-1}}{D_{L-2}} + \varepsilon\right) \cdots \left(\frac{D_2}{D_1} + \varepsilon\right)$$
$$= R + R \left(\frac{D_{L-1}}{D_L} + \frac{D_{L-2}}{D_{L-1}} + \cdots + \frac{D_1}{D_2}\right) \varepsilon + O(\varepsilon^2)$$

Overall separation ability $R := \frac{D_L}{D_1} = \frac{D_L}{D_{L-1}} \times \frac{D_{L-1}}{D_{L-2}} \times \cdots \times \frac{D_2}{D_1}$ Perturb each layer:

$$\left(\frac{D_L}{D_{L-1}} + \varepsilon\right) \left(\frac{D_{L-1}}{D_{L-2}} + \varepsilon\right) \cdots \left(\frac{D_2}{D_1} + \varepsilon\right)$$
$$= R + R \left(\frac{D_{L-1}}{D_L} + \frac{D_{L-2}}{D_{L-1}} + \cdots + \frac{D_1}{D_2}\right) \varepsilon + O(\varepsilon^2)$$

The perturbation $R\left(\frac{D_{L-1}}{D_L} + \frac{D_{L-2}}{D_{L-1}} + \dots + \frac{D_1}{D_2}\right)\varepsilon$ is minimized in absolute

value when

$$\frac{D_L}{D_{L-1}} = \frac{D_{L-1}}{D_{L-2}} = \dots = \frac{D_2}{D_1}$$

Overall separation ability $R := \frac{D_L}{D_1} = \frac{D_L}{D_{L-1}} \times \frac{D_{L-1}}{D_{L-2}} \times \cdots \times \frac{D_2}{D_1}$ Perturb each layer:

$$\left(\frac{D_L}{D_{L-1}} + \varepsilon\right) \left(\frac{D_{L-1}}{D_{L-2}} + \varepsilon\right) \cdots \left(\frac{D_2}{D_1} + \varepsilon\right)$$
$$= R + R \left(\frac{D_{L-1}}{D_L} + \frac{D_{L-2}}{D_{L-1}} + \cdots + \frac{D_1}{D_2}\right) \varepsilon + O(\varepsilon^2)$$

The perturbation $R\left(\frac{D_{L-1}}{D_L} + \frac{D_{L-2}}{D_{L-1}} + \dots + \frac{D_1}{D_2}\right)\varepsilon$ is minimized in absolute value when

 $\frac{D_L}{D_{L-1}} = \frac{D_{L-1}}{D_{L-2}} = \dots = \frac{D_2}{D_1}$

Train at least until the law comes into effect

Overall separation ability $R := \frac{D_L}{D_1} = \frac{D_L}{D_{L-1}} \times \frac{D_{L-1}}{D_{L-2}} \times \cdots \times \frac{D_2}{D_1}$ Perturb each layer:

$$\left(\frac{D_L}{D_{L-1}} + \varepsilon\right) \left(\frac{D_{L-1}}{D_{L-2}} + \varepsilon\right) \cdots \left(\frac{D_2}{D_1} + \varepsilon\right)$$
$$= R + R \left(\frac{D_{L-1}}{D_L} + \frac{D_{L-2}}{D_{L-1}} + \cdots + \frac{D_1}{D_2}\right) \varepsilon + O(\varepsilon^2)$$

The perturbation $R\left(\frac{D_{L-1}}{D_L} + \frac{D_{L-2}}{D_{L-1}} + \dots + \frac{D_1}{D_2}\right)\varepsilon$ is minimized in absolute

value when

$$\frac{D_L}{D_{L-1}} = \frac{D_{L-1}}{D_{L-2}} = \dots = \frac{D_2}{D_1}$$

- Train at least until the law comes into effect
- An analog: if Wakanda wants to double GDP in 10 years, the most robust way is to fix annual growth rate at $2\frac{1}{10}-1=7.2\%$

Weijie Su@Wharton

Equi-separation implies better generalization

- Frozen training: bottom/top 10 layers are trained while the others are fixed
- Have about the same final separation measure and training loss

Equi-separation implies better generalization

- Frozen training: bottom/top 10 layers are trained while the others are fixed
- Have about the same final separation measure and training loss
- Test accuracy:
 - Unfrozen: 21.46%
 - Frozen: 18.25%

Weijie Su@Wharton

What are the basic operational modules in ResNet?

What are the basic operational modules in ResNet?

• The right module is block for ResNet

What are the basic operational modules in ResNet?

- The right module is block for ResNet
- All layers/modules are created equal

What are the basic operational modules in ResNet?

- The right module is block for ResNet
- All layers/modules are created equal
- Need to take all layers collectively for interpretation, challenging layer-wise approaches (Zeiler and Fergus'14)

Part III: A Law of Next-Token Prediction for LLMs

Collaborator

• Hangfeng He (Penn→University of Rochester)

How about Transformers/large language models?

What to predict?

MLP

- Data: raw feature $oldsymbol{x}$ and label y
- Task: use *x* to predict *y*

Transformer (GPT, decoding only)

- Data: tokens x_1, x_2, \ldots, x_T
- Task: use $x_1 \cdots x_t$ to predict x_{t+1}

What to predict?

MLP

- Data: raw feature $oldsymbol{x}$ and label y
- Task: use *x* to predict *y*

$x^{(2)} \cdots x^{(2)}$

Transformer (GPT, decoding only)

- Data: tokens x_1, x_2, \ldots, x_T
- Task: use $x_1 \cdots x_t$ to predict x_{t+1}

The right metric for GPT

- Let $\widetilde{\boldsymbol{x}}$ denote the *embedding* of \boldsymbol{x}
- $\widetilde{m{x}}^{(l)}$ denotes the feature passing through l layers in Transformer

Fact

Decoding-only LLM (GPT) predicts the $(t + 1)^{st}$ token based on the last-layer feature of the t^{th} token:

 $\widetilde{m{x}}_t^{(L)}$

The right metric for GPT

- Let \widetilde{x} denote the *embedding* of x
- $\widetilde{m{x}}^{(l)}$ denotes the feature passing through l layers in Transformer

Fact

Decoding-only LLM (GPT) predicts the $(t + 1)^{st}$ token based on the last-layer feature of the t^{th} token:

 $\widetilde{x}_{t}^{(L)}$

Metric

At each layer, use $\widetilde{x}_{t}^{(l)}$ to predict the next token x_{t+1} . Use the error as the metric:

$$\frac{\sum (x_{\text{next}} - \hat{x}_{\text{next}})^2}{\sum (x_{\text{next}} - \bar{x}_{\text{next}})^2}$$

It's 1 minus the coefficient of determination

Experiments

Non-Transformer architectures

In contrast, (raw) embeddings are chaotic

Contextualized embeddings for patients, cells, and disorder

The law of equi-learning with varying model sizes

Tasks matter

Concluding remarks

- Model the world as additive
- Model the world as a composition

- Model the world as additive
- $f = f_1 + f_2 + \dots + f_m$

- Model the world as a composition
- $f = f_1 \circ f_2 \circ \cdots \circ f_m$

- Model the world as additive
- $f = f_1 + f_2 + \dots + f_m$
- Tons of beautiful mathematics

Model the world as a composition

•
$$f = f_1 \circ f_2 \circ \cdots \circ f_m$$

• Mathematically, little is known

- Model the world as additive
- $f = f_1 + f_2 + \dots + f_m$
- Tons of beautiful mathematics

• Model the world as a composition

•
$$f = f_1 \circ f_2 \circ \cdots \circ f_m$$

- Mathematically, little is known
- But equi-separation/learning laws show f_1, \ldots, f_m are structured

Take-home messages

A law governing how data is processed in intermediate layers

- For both MLP and Transformer (and beyond)
- No mathematical proof yet

Take-home messages

A law governing how data is processed in intermediate layers

- For both MLP and Transformer (and beyond)
- No mathematical proof yet

References

- Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training with Cong Fang, Hangfeng He, and Qi Long Proceedings of the National Academy of Sciences (PNAS), 2021
- 2 A Law of Data Separation in Deep Learning with Hangfeng He Proceedings of the National Academy of Sciences (PNAS), 2023

3 A Law of Next-Token Prediction in Large Language Models with Hangfeng He arXiv:2408.13442, 2024