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Wait, making deep learning a science requires...

• Why don’t heavily parameterized neural
networks overfit the data?

• What is the effective number of parameters?

• Why doesn’t backpropagation get stuck in
poor local minima with low value of the loss function, yet bad test error?

Yet another bitter lesson (in addition to Sutton’s)
Very difficult to build a mathematical foundation for deep learning...

• Highly incomplete: Kawaguchi’16, Arora et al.’19, Jacot et al.’18, Allen-Zhu et
al.’18, Du et al.’19, Mei et al.’19,...
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This talk

1 A small surrogate model
Analyze the last-layer weights and features of well-trained neural networks

2 A simple geometric law in MLP
Describe how data are separated through layers in well-trained neural
networks

3 Extension of the law to Transformer and beyond
Describe how the next token is predicted across layers in Transformer
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Part I: A Layer-Peeled Model



Collaborators

• Cong Fang (Penn!Peking University)

• Hangfeng He (Penn!University of Rochester)

• Qi Long (Penn)
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Illustration of our approach (for MLP)

1-Layer-Peeled Model 2-Layer-Peeled Model
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Setup for deep learning

Neural network for K-class classification:

f(x;Wfull) = WL� (WL�1�(· · ·�(W1x) · · · ))

• �(·) is a nonlinear activation function

• Wfull := {W1,W2, . . . ,WL} collects the weights

• Bias omitted

Optimization problem:

min
Wfull

1

N

KX

k=1

nkX

i=1

L(f(xk,i;Wfull),yk) +
�

2
kWfullk2

• yk is a one-hot vector denoting the k-th class

• � weight decay parameter, L cross-entropy loss
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A peek at Layer-Peeled Model

f(x;Wfull) = WL� (WL�1�(· · ·�(W1x) · · · ))

min
Wfull

1

N

KX

k=1

nkX

i=1

L(f(xk,i;Wfull),yk) +
�

2
kWfullk2

• Difficult to pinpoint how any layer Wl influences the output

• hk,i denotes � (WL�1�(· · ·�(W1xk,i) · · · )); WL = [w1, . . . ,wK ]>

• Terminal phase of training (Papyan et al. 2020)
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Derivation: an ansatz

Assumption

�
H(W�L) : kW�Lk2 6 C2

 
⇡
(
H :

KX

k=1

1

nk

nkX

i=1

khk,ik2 6 C
0
2

)

min
WL,H

1

N

KX

k=1

nkX

i=1

L(WLhk,i,yk)

s.t. kWLk2 6 C1

H 2
�
H(W�L) : kW�Lk2 6 C2

 

min
W ,H

1

N

KX

k=1

nkX

i=1

L(Whk,i,yk)

s.t.
1

K

KX

k=1

kwkk2  EW

1

K

KX

k=1

1

nk

nkX

i=1

khk,ik2  EH

• Self-duality of `2 spaces

• More justification for the ansatz later
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Balanced training

All class sizes are equal: n1 = n2 = · · · = nK

What can the Layer-Peeled Model say?

Theorem

Any global minimizer W ? ⌘ [w?

1 , . . . ,w
?

K
]> ,H

? ⌘ [h?

k,i
: 1 6 k 6 K, 1 6 i 6 n]

with cross-entropy loss obeys

h
?

k,i
= Cw

?

k
= C

0
m

?

k
,

where [m?

1, . . . ,m
?

K
] forms a K-simplex equiangular tight frame (ETF)

• h
?

k,i
depends only on the class membership!

• C =
p
EH/EW , C

0 =
p
EH
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K-simplex ETF

K equal-length vectors form the largest possible equal-sized angles between
any pair

Equivalently, random variables ⇠1, . . . , ⇠K of mean 0 and variance 1. If E⇠i⇠j = ⇢

for all i 6= j, what’s the min of ⇢?

largest angle = arccos

✓
� 1

K � 1

◆

K = 2 K = 3 K = 4
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This is simply Neural Collapse!

Papyan, Han, and Donoho discovered Neural Collapse in 2020:

1 Variability collapse: features collapse to their class means

2 Class means centered at their global mean collapse to ETF

3 Up to scaling, last-layer classifiers each collapse to class means

4 Classifier’s decision collapses to choosing the closet class mean

Implications on better generalization, large margin, and robustness

[Mixon et al.’20, E and Wojtowytsch’20, Lu and Steinerberger’20, Zhu et al.’21] justified
neural collapse using different models
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Neural Collapse can justify the Layer-Peeled Model



About the ansatz

Recall

�
H(W�L) : kW�Lk2 6 C2

 
⇡
(
H :

KX

k=1

1

nk

nkX

i=1

khk,ik2 6 C
0
2

)

This gives

min
W ,H

1

N

KX

k=1

nkX

i=1

L(Whk,i,yk)

s.t.
1

K

KX

k=1

kwkk2  EW

1

K

KX

k=1

1

nk

nkX

i=1

khk,ik2  EH
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What happens without the ansatz?

Without the ansatz:

min
W ,H

1

N

KX

k=1

nX

i=1

L(Whk,i,yk)

s.t.
1

K

KX

k=1

kwkk2  EW

1

K

KX

k=1

1

n

nX

i=1

khk,ikqq  EH

Proposition
Assume K > 3 and p � K . For any q 2 (0, 2) [ (2,1), neural collapse does not

emerge in the model above

• Is it possible to directly justify the ansatz?
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Can the Layer-Peeled Model predict something?



Imbalanced training

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

• The first KA majority classes each contain nA training examples
(n1 = n2 = · · · = nKA = nA)

• The remaining KB := K �KA minority classes each contain nB examples
(nKA+1 = nKA+2 = · · · = nK = nB)

• Call R := nA/nB > 1 the imbalance ratio
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Convex relaxation

min
X2R2K⇥2K

KX

k=1

nk

N
L(zk,yk)

s.t. zk = [X(k,K + 1),X(k,K + 2), . . . ,X(k, 2K) ]>

1

K

KX

k=1

X(k, k)  EH ,
1

K

2KX

k=K+1

X(k, k)  EW

X ⌫ 0

• Not a semidefinite program in the strict sense because a semidefinite
program uses a linear objective function
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A numerical surprise

Average cosine of between-minority-class angles
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(1) When R < R0 for some R0 > 0, average between-minority-class angle
becomes smaller as R increases

(2) Once R � R0, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!
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Minority Collapse

(1) When R < R0 for some R0 > 0, average between-minority-class angle
becomes smaller as R increases

(2) Once R � R0, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!

Proposition
Let (H?

,W
?) be any global minimizer of the Layer-Peeled Model. As

R ⌘ nA/nB ! 1, we have

limw
?

k
�w

?

k0 = 0p for all KA < k < k
0 6 K

• The prediction on the minority classes becomes completely at random
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Minority Collapse

(1) When R < R0 for some R0 > 0, average between-minority-class angle
becomes smaller as R increases

(2) Once R � R0, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!

Proposition (Chen 2023)
Let (H?

,W
?) be any global minimizer of the Layer-Peeled Model. When

R > R
⇤, we have

w
?

k
= w

?

k0 for all KA < k < k
0 6 K

• The prediction on the minority classes becomes completely at random

• Fairness issue
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Illustration of Minority Collapse
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Intuition for Minority Collapse

min
W ,H

1

N

KX

k=1

nkX

i=1

L(Whk,i,yk)

s.t.
1

K

KX

k=1

kwkk2  EW

1

K

KX

k=1

1

nk

nkX

i=1

khk,ik2  EH

Competition for space!
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Is Minority Collapse a real thing?



Minority Collapse in experiments
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Part II: A Law of Data Separation



Let’s dig into it

Does neural collapse extend to
intermediate layers?

• Seems chaotic

• Too many nonlinearities, plus high degrees of
non-uniqueness

• Any other patterns?
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Collaborator

• Hangfeng He (Penn!University of Rochester)
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Chaotic patterns
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“Big” symmetries are gone. How about “small”
symmetries?



A numerical surprise: equi-separation

Layer index

C
er

ta
in

m
ea

su
re

in
lo

g
sc

al
e
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8-layer feedforward network trained on FashinMNIST using Adam
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Correlation = �0.997

8-layer feedforward network trained on FashinMNIST using Adam



A sharp comparison
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More experimental results

SGD-4 SGD-8 SGD-20

SGD+Momentum-4 SGD+Momentum-8 SGD+Momentum-20

Adam-4 Adam-8 Adam-20
27 / 53Weijie Su@Wharton



More experimental results

SGD-4 SGD-8 SGD-20

SGD+Momentum-4 SGD+Momentum-8 SGD+Momentum-20

Adam-4 Adam-8 Adam-20
28 / 53Weijie Su@Wharton



A canonical quantity in multivariate statistics

x̄k := (xk,1 + · · ·+ xk,nk)/nk: sample mean of Class k
x̄ := (n1x̄1 + · · ·+ nK x̄K)/n: global mean (n := n1 + · · ·+ nK )

Sum of squares between (signal)

SSB :=
1

n

KX

k=1

nk(x̄k�x̄)(x̄k�x̄)>

Sum of squares within (noise)

SSW :=
1

n

KX

k=1

nkX

i=1

(xk,i�x̄k)(xk,i�x̄k)
>

Measure of how well data are separated

D := Tr(SSWSSB+)

• SSB+ is the Moore–Penrose inverse of the matrix SSB

• Inverse signal-to-noise ratio (Papyan et al.’20)

• Weighted projection of noise onto (K � 1)-D space spanned by SSB. Thus
no need to normalize D by the dimension
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It’s well separated
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An (empirical) law of deep learning

Dl: separation measure for data before passing through the l
th layer

The law of equi-separation
For 1 6 l 6 L and some 0 < ⇢ < 1:

Dl ⇡ c⇢
l

• Nonlinearity is crucial

• Equivalently,

logDl+1 � logDl ⇡ � log
1

⇢

• ⇢ = 0.53 above. So half-life: t 1
2
=

log 2

log ⇢�1
= 1.1

31 / 53Weijie Su@Wharton
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When does it emerge?

Earlier than neural collapse

Epoch-0 Epoch=10 Epoch=20

Epoch-30 Epoch=50 Epoch=100

Epoch-200 Epoch=300 Epoch=600
32 / 53Weijie Su@Wharton



When does it emerge? Earlier than neural collapse

Epoch-0 Epoch=10 Epoch=20

Epoch-30 Epoch=50 Epoch=100

Epoch-200 Epoch=300 Epoch=600
32 / 53Weijie Su@Wharton



Earlier than neural collapse

Epoch
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Ask me anything about this law

Is this law pervasive? Yes

Does this law provide insights into the practice
of deep learning?

Yes

Any intuition about why this law appears? I think so

Can we prove this law? Not yet
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Data, imbalance, and learning rate

CIFAR10-4 CIFAR10-8 CIFAR10-20

Imbalance-4 Imbalance-8 Imbalance-20

Learning rate: 0.01 Learning rate: 0.03 Learning rate: 0.1
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Architecture

AlexNetX-FMNIST AlexNetX-CIFAR10 VGG13X-FMNIST
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Guidelines and insights from the law of equi-separation

The trilogy of the deep learning practice

• Network architecture

• Training

• Interpretation

37 / 53Weijie Su@Wharton



Dependence on the depth

DL ⇡ c⇢
L: deep learning is necessarily to be deep

However, a complete story is slightly different

MNIST FashionMNIST CIFAR10

• The choice of depth should consider the complexity of the applications

• Prior literature does not take the data-separation perspective (Srivastava et
al.’15)
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Data-separation perspective on width and shape

Width: 20 Width: 100 Width: 1000

Shape: narrow-wide Shape: wide-narrow Shape: mix

• Very wide neural networks should not be recommended (Tan and Le’19)

• Look vertically rather than horizontally when judging a network
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Equi-separation implies robustness

Overall separation ability R :=
DL

D1
=

DL

DL�1
⇥ DL�1

DL�2
⇥ · · ·⇥ D2

D1

Perturb each layer:

✓
DL

DL�1
+ "

◆✓
DL�1

DL�2
+ "

◆
· · ·

✓
D2

D1
+ "

◆

= R+R

✓
DL�1

DL

+
DL�2

DL�1
+ · · ·+ D1

D2

◆
"+O("2)

The perturbation R

✓
DL�1

DL

+
DL�2

DL�1
+ · · ·+ D1

D2

◆
" is minimized in absolute

value when
DL

DL�1
=

DL�1

DL�2
= · · · = D2

D1

• Train at least until the law comes into effect

• An analog: if Wakanda wants to double GDP in 10 years, the most robust

way is to fix annual growth rate at 2
1
10 � 1 = 7.2%

40 / 53Weijie Su@Wharton



Equi-separation implies robustness

Overall separation ability R :=
DL

D1
=

DL

DL�1
⇥ DL�1

DL�2
⇥ · · ·⇥ D2

D1
Perturb each layer:

✓
DL

DL�1
+ "

◆✓
DL�1

DL�2
+ "

◆
· · ·

✓
D2

D1
+ "

◆

= R+R

✓
DL�1

DL

+
DL�2

DL�1
+ · · ·+ D1

D2

◆
"+O("2)

The perturbation R

✓
DL�1

DL

+
DL�2

DL�1
+ · · ·+ D1

D2

◆
" is minimized in absolute

value when
DL

DL�1
=

DL�1

DL�2
= · · · = D2

D1

• Train at least until the law comes into effect

• An analog: if Wakanda wants to double GDP in 10 years, the most robust

way is to fix annual growth rate at 2
1
10 � 1 = 7.2%

40 / 53Weijie Su@Wharton



Equi-separation implies robustness

Overall separation ability R :=
DL

D1
=

DL

DL�1
⇥ DL�1

DL�2
⇥ · · ·⇥ D2

D1
Perturb each layer:

✓
DL

DL�1
+ "

◆✓
DL�1

DL�2
+ "

◆
· · ·

✓
D2

D1
+ "

◆

= R+R

✓
DL�1

DL

+
DL�2

DL�1
+ · · ·+ D1

D2

◆
"+O("2)

The perturbation R

✓
DL�1

DL

+
DL�2

DL�1
+ · · ·+ D1

D2

◆
" is minimized in absolute

value when
DL

DL�1
=

DL�1

DL�2
= · · · = D2

D1

• Train at least until the law comes into effect

• An analog: if Wakanda wants to double GDP in 10 years, the most robust

way is to fix annual growth rate at 2
1
10 � 1 = 7.2%

40 / 53Weijie Su@Wharton



Equi-separation implies robustness

Overall separation ability R :=
DL

D1
=

DL

DL�1
⇥ DL�1

DL�2
⇥ · · ·⇥ D2

D1
Perturb each layer:

✓
DL

DL�1
+ "

◆✓
DL�1

DL�2
+ "

◆
· · ·

✓
D2

D1
+ "

◆

= R+R

✓
DL�1

DL

+
DL�2

DL�1
+ · · ·+ D1

D2

◆
"+O("2)

The perturbation R

✓
DL�1

DL

+
DL�2

DL�1
+ · · ·+ D1

D2

◆
" is minimized in absolute

value when
DL

DL�1
=

DL�1

DL�2
= · · · = D2

D1

• Train at least until the law comes into effect

• An analog: if Wakanda wants to double GDP in 10 years, the most robust

way is to fix annual growth rate at 2
1
10 � 1 = 7.2%

40 / 53Weijie Su@Wharton



Equi-separation implies robustness

Overall separation ability R :=
DL

D1
=

DL

DL�1
⇥ DL�1

DL�2
⇥ · · ·⇥ D2

D1
Perturb each layer:

✓
DL

DL�1
+ "

◆✓
DL�1

DL�2
+ "

◆
· · ·

✓
D2

D1
+ "

◆

= R+R

✓
DL�1

DL

+
DL�2

DL�1
+ · · ·+ D1

D2

◆
"+O("2)

The perturbation R

✓
DL�1

DL

+
DL�2

DL�1
+ · · ·+ D1

D2

◆
" is minimized in absolute

value when
DL

DL�1
=

DL�1

DL�2
= · · · = D2

D1

• Train at least until the law comes into effect

• An analog: if Wakanda wants to double GDP in 10 years, the most robust

way is to fix annual growth rate at 2
1
10 � 1 = 7.2%

40 / 53Weijie Su@Wharton



Equi-separation implies better generalization

Unfrozen Frozen

• Frozen training: bottom/top 10 layers are trained while the others are fixed

• Have about the same final separation measure and training loss

• Test accuracy:
Unfrozen: 21.46%
Frozen: 18.25%
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Interpretation from data-separation perspective

What are the basic operational modules in ResNet?

2 layers in a block 3 layers in a block Mix

• The right module is block for ResNet

• All layers/modules are created equal

• Need to take all layers collectively for interpretation, challenging layer-wise
approaches (Zeiler and Fergus’14)
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Part III: A Law of Next-Token Prediction for LLMs



Collaborator

• Hangfeng He (Penn!University of Rochester)
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How about Transformers/large language models?

Transformer
MLP
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What to predict?

MLP

• Data: raw feature x and label y

• Task: use x to predict y

x
x(1)

x(2)

y
……

Transformer (GPT, decoding only)

• Data: tokens x1, x2, . . . , xT

• Task: use x1 · · ·xt to predict xt+1
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The right metric for GPT

• Let ex denote the embedding of x

• ex(l) denotes the feature passing through l layers in Transformer

Fact
Decoding-only LLM (GPT) predicts the (t+ 1)st token based on the last-layer
feature of the t

th token:
ex(L)
t

Metric

At each layer, use ex(l)
t

to predict the next token xt+1. Use the error as the metric:
P

(xnext � x̂next)2P
(xnext � x̄next)2

• It’s 1 minus the coefficient of determination

46 / 53Weijie Su@Wharton



The right metric for GPT

• Let ex denote the embedding of x

• ex(l) denotes the feature passing through l layers in Transformer

Fact
Decoding-only LLM (GPT) predicts the (t+ 1)st token based on the last-layer
feature of the t

th token:
ex(L)
t

Metric

At each layer, use ex(l)
t

to predict the next token xt+1. Use the error as the metric:
P

(xnext � x̂next)2P
(xnext � x̄next)2

• It’s 1 minus the coefficient of determination

46 / 53Weijie Su@Wharton



Experiments

GPT-1 GPT-2 XL Llama-1-13B Llama-2-13B

Llama-2-13B-Chat Llama-3-8B Llama-3-8B-Instruct Mistral-7B-v0.1

Mistral-7B-Instruct-
v0.1

Mistral-7B-v0.2 Mistral-7B-Instruct-
v0.2

Mistral-7B-v0.3



Non-Transformer architectures

RWKV-7B RWKV-Raven-1.5B RWKV-Raven-3B

RWKV-Raven-7B Mamba-130M Mamba-370M

Mamba-790M Mamba-1.4B Mamba-2.8B



In contrast, (raw) embeddings are chaotic
Contextualized embeddings for patients, cells, and disorder

Layer=1 Layer=2 Layer=3 Layer=4

Layer=5 Layer=6 Layer=7 Layer=8

Layer=9 Layer=10 Layer=11 Layer=12



The law of equi-learning with varying model sizes
G

PT
-2

GPT-2 GPT-2 Medium GPT-2 Large GPT-2 XL

RW
K

V
-R

av
en

RWKV-Raven-1.5B RWKV-Raven-3B RWKV-Raven-7B RWKV-Raven-14B

M
am

ba

Mamba-370M Mamba-790M Mamba-1.4B Mamba-2.8B



Tasks matter
N

TP

BERT-base (uncased) BERT-large (uncased) RoBERTa-base RoBERTa-large

M
LM

BERT-base (uncased) BERT-large (uncased) RoBERTa-base RoBERTa-large

N
TP

T5-base T5-large T5-3B T5-11B

SC

T5-base T5-large T5-3B T5-11B



Concluding remarks



Rambling thoughts

• Model the world as additive

• f = f1 + f2 + · · ·+ fm

• Tons of beautiful mathematics

• Model the world as a composition

• f = f1 � f2 � · · · � fm

• Mathematically, little is known

• But equi-separation/learning laws
show f1, . . . , fm are structured
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Take-home messages

A law governing how data is processed in intermediate layers

• For both MLP and Transformer (and beyond)

• No mathematical proof yet

References
1 Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in

Imbalanced Training
with Cong Fang, Hangfeng He, and Qi Long
Proceedings of the National Academy of Sciences (PNAS), 2021

2 A Law of Data Separation in Deep Learning
with Hangfeng He
Proceedings of the National Academy of Sciences (PNAS), 2023

3 A Law of Next-Token Prediction in Large Language Models
with Hangfeng He
arXiv:2408.13442, 2024
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